List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/967977/publications.pdf Version: 2024-02-01

FRIC VIVIER

#	Article	lF	CITATIONS
1	Exploiting Natural Killer Cell Engagers to Control Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. Cancer Immunology Research, 2022, 10, 291-302.	1.6	17
2	Innate lymphoid cells and cancer. Nature Immunology, 2022, 23, 371-379.	7.0	75
3	Group 1 ILCs regulate T cell–mediated liver immunopathology by controlling local IL-2 availability. Science Immunology, 2022, 7, eabi6112.	5.6	18
4	Advancing natural killer therapies against cancer. Cell, 2022, 185, 1451-1454.	13.5	7
5	Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. , 2022, 10, e004244.		23
6	Multidimensional molecular controls defining NK/ILC1 identity in cancers. Seminars in Immunology, 2021, 52, 101424.	2.7	15
7	Natural killers or ILC1s? That is the question. Current Opinion in Immunology, 2021, 68, 48-53.	2.4	45
8	Campylobacter infection promotes IFNγ-dependent intestinal pathology via ILC3 to ILC1 conversion. Mucosal Immunology, 2021, 14, 703-716.	2.7	18
9	Tumor-Infiltrating Natural Killer Cells. Cancer Discovery, 2021, 11, 34-44.	7.7	223
10	Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. Cellular and Molecular Immunology, 2021, 18, 1290-1304.	4.8	62
11	ISACs take a Toll on tumors. Nature Cancer, 2021, 2, 12-13.	5.7	0
12	Combination blockade of KLRG1 and PD-1 promotes immune control of local and disseminated cancers. Oncolmmunology, 2021, 10, 1933808.	2.1	21
13	Liver type 1 innate lymphoid cells develop locally via an interferon-γ–dependent loop. Science, 2021, 371,	6.0	64
14	ILC3s control splenic cDC homeostasis via lymphotoxin signaling. Journal of Experimental Medicine, 2021, 218, .	4.2	6
15	Complement cascade in severe forms of COVIDâ€19: Recent advances in therapy. European Journal of Immunology, 2021, 51, 1652-1659.	1.6	46
16	Innate lymphoid cell recovery and occurrence of GvHD after hematopoietic stem cell transplantation. Journal of Leukocyte Biology, 2021, 111, 161-172.	1.5	7
17	Reply to â€ ⁻ Comment to: Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia'. Cellular and Molecular Immunology, 2021, 18, 1350-1352.	4.8	2
18	Manipulation des cellules Natural KillerÂen immunothérapie des cancers. Bulletin De L'Academie Nationale De Medecine, 2021, 205, 350-353.	0.0	0

#	Article	IF	CITATIONS
19	Phase I Trial of Prophylactic Donor-Derived IL-2-Activated NK Cell Infusion after Allogeneic Hematopoietic Stem Cell Transplantation from a Matched Sibling Donor. Cancers, 2021, 13, 2673.	1.7	12
20	Natural killer cell engagers in cancer immunotherapy: Next generation of immunoâ€oncology treatments. European Journal of Immunology, 2021, 51, 1934-1942.	1.6	89
21	Natural killer cells lull tumours into dormancy. Nature, 2021, 594, 501-502.	13.7	7
22	Tumor Microenvironment–Derived R-spondins Enhance Antitumor Immunity to Suppress Tumor Growth and Sensitize for Immune Checkpoint Blockade Therapy. Cancer Discovery, 2021, 11, 3142-3157.	7.7	6
23	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	7.0	97
24	Single-cell transcriptomic landscape reveals tumor specific innate lymphoid cells associated with colorectal cancer progression. Cell Reports Medicine, 2021, 2, 100353.	3.3	44
25	The discovery of innate lymphoid cells. Nature Reviews Immunology, 2021, 21, 616-616.	10.6	14
26	10 Harnessing innate immunity in cancer therapies: The example of natural killer cell engagers. Annals of Oncology, 2021, 32, S361.	0.6	0
27	NKG2A expression identifies a subset of human Vδ2 TÂcells exerting the highest antitumor effector functions. Cell Reports, 2021, 37, 109871.	2.9	30
28	Clues that natural killer cells help to control COVID. Nature, 2021, 600, 226-227.	13.7	10
29	Type 1 Innate Lymphoid Cells Limit the Antitumoral Immune Response. Frontiers in Immunology, 2021, 12, 768989.	2.2	11
30	The Innate Part of the Adaptive Immune System. Clinical Reviews in Allergy and Immunology, 2020, 58, 151-154.	2.9	52
31	Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature, 2020, 588, 146-150.	13.7	401
32	Inflammation-Induced Lactate Leads to Rapid Loss of Hepatic Tissue-Resident NK Cells. Cell Reports, 2020, 32, 107855.	2.9	19
33	NK cell–derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. Journal of Experimental Medicine, 2020, 217, .	4.2	60
34	LBA53 Precision immuno-oncology for advanced non-small cell lung cancer (NSCLC) patients (pts) treated with PD1/L1 immune checkpoint inhibitors (ICIs): A first analysis of the PIONeeR study. Annals of Oncology, 2020, 31, S1183.	0.6	11
35	SnapShot: Natural Killer Cells. Cell, 2020, 180, 1280-1280.e1.	13.5	95
36	Boosting Cytotoxic Antibodies against Cancer. Cell, 2020, 180, 822-824.	13.5	3

#	Article	IF	CITATIONS
37	Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19. Cellular and Molecular Immunology, 2020, 17, 995-997.	4.8	56
38	c-FLIP is crucial for IL-7/IL-15-dependent NKp46+ ILC development and protection from intestinal inflammation in mice. Nature Communications, 2020, 11, 1056.	5.8	12
39	Blood natural killer cell deficiency reveals an immunotherapy strategy for atopic dermatitis. Science Translational Medicine, 2020, 12, .	5.8	57
40	A comprehensive approach to gene expression profiling in immune cells. Methods in Enzymology, 2020, 636, 1-47.	0.4	1
41	Immuno-Oncology beyond TILs: Unleashing TILCs. Cancer Cell, 2020, 37, 428-430.	7.7	16
42	Editorial: In Memoriam of Professor Alessandro Moretta. Frontiers in Immunology, 2020, 11, .	2.2	0
43	483â€Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. , 2020, , .		11
44	Maternal diesel particle exposure promotes offspring asthma through NK cell–derived granzyme B. Journal of Clinical Investigation, 2020, 130, 4133-4151.	3.9	21
45	The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. Journal of Experimental Medicine, 2019, 216, 2010-2023.	4.2	15
46	Identification of the E3 Ligase TRIM29 as a Critical Checkpoint Regulator of NK Cell Functions. Journal of Immunology, 2019, 203, 873-880.	0.4	27
47	Monalizumab: inhibiting the novel immune checkpoint NKC2A. , 2019, 7, 263.		182
48	Therapeutic blockade of activin-A improves NK cell function and antitumor immunity. Science Signaling, 2019, 12, .	1.6	64
49	Inherited IL-18BP deficiency in human fulminant viral hepatitis. Journal of Experimental Medicine, 2019, 216, 1777-1790.	4.2	70
50	Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell, 2019, 177, 1701-1713.e16.	13.5	280
51	Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Reports, 2019, 27, 2411-2425.e9.	2.9	274
52	Helper-like innate lymphoid cells and cancer immunotherapy. Seminars in Immunology, 2019, 41, 101274.	2.7	25
53	Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein <scp>TRF</scp> 2. EMBO Journal, 2019, 38, .	3.5	49
54	Targeting natural killer cells in solid tumors. Cellular and Molecular Immunology, 2019, 16, 415-422.	4.8	166

#	Article	IF	CITATIONS
55	Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nature Communications, 2019, 10, 1444.	5.8	29
56	Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature, 2019, 568, 405-409.	13.7	199
57	P1.04-30 Pioneer Study: Precision Immuno-Oncology for Advanced Non-Small Cell Lung Cancer Patients with PD1/L1 ICI Resistance. Journal of Thoracic Oncology, 2019, 14, S451-S452.	0.5	1
58	Harnessing innate immunity in cancer therapy. Nature, 2019, 574, 45-56.	13.7	533
59	The immunological functions of the Appendix: An example of redundancy?. Seminars in Immunology, 2018, 36, 31-44.	2.7	68
60	Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clinical and Translational Immunology, 2018, 7, e1003.	1.7	16
61	<scp>ILC</scp> 2 memory: Recollection of previous activation. Immunological Reviews, 2018, 283, 41-53.	2.8	32
62	Crk Adaptor Proteins Regulate NK Cell Expansion and Differentiation during Mouse Cytomegalovirus Infection. Journal of Immunology, 2018, 200, 3420-3428.	0.4	8
63	Shp-2 Is Dispensable for Establishing T Cell Exhaustion and for PD-1 Signaling InÂVivo. Cell Reports, 2018, 23, 39-49.	2.9	114
64	Role of NKp46 ⁺ natural killer cells in house dust miteâ€driven asthma. EMBO Molecular Medicine, 2018, 10, .	3.3	16
65	NK Cell-Based Therapies. , 2018, , 275-288.		2
66	NKG2D–MICA Interaction: A Paradigm Shift in Innate Recognition. Journal of Immunology, 2018, 200, 2229-2230.	0.4	8
67	Genetic Depletion or Hyperresponsiveness of Natural Killer Cells Do Not Affect Atherosclerosis Development. Circulation Research, 2018, 122, 47-57.	2.0	41
68	ITIMs: episode 1 of the inhibitory saga. Nature Reviews Immunology, 2018, 18, 4-4.	10.6	3
69	A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Research, 2018, 78, 1003-1016.	0.4	269
70	Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell, 2018, 175, 1731-1743.e13.	13.5	812
71	High-Dimensional Single-Cell Analysis Identifies Organ-Specific Signatures and Conserved NK Cell Subsets in Humans and Mice. Immunity, 2018, 49, 971-986.e5.	6.6	343
72	Chemotherapy and tumor immunity. Science, 2018, 362, 1355-1356.	6.0	36

#	Article	IF	CITATIONS
73	A point mutation in the <i>Ncr1</i> signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	2.1	9
74	Neuroendocrine regulation of innate lymphoid cells. Immunological Reviews, 2018, 286, 120-136.	2.8	43
75	Natural killer cells and other innate lymphoid cells in cancer. Nature Reviews Immunology, 2018, 18, 671-688.	10.6	702
76	Activating and inhibitory receptors expressed on innate lymphoid cells. Seminars in Immunopathology, 2018, 40, 331-341.	2.8	44
77	The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nature Immunology, 2018, 19, 809-820.	7.0	42
78	Alessandro Moretta (1953–2018). Immunity, 2018, 48, 601-602.	6.6	1
79	A Tribute to Alessandro Moretta (1953–2018). Living Without Alessandro. Frontiers in Immunology, 2018, 9, .	2.2	1
80	Reply to â€~Comment on: Evidence of innate lymphoid cell redundancy in humans'. Nature Immunology, 2018, 19, 789-790.	7.0	6
81	Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nature Immunology, 2018, 19, 954-962.	7.0	125
82	Innate Lymphoid Cells: 10 Years On. Cell, 2018, 174, 1054-1066.	13.5	1,467
83	Abstract 1690: NKG2A immune checkpoint blockade potentiates cetuximab induced ADCC in head and neck cancer preclinical model. , 2018, , .		1
84	Abstract 2714: Combination of monalizumab and durvalumab as a potent immunotherapy treatment for solid human cancers. , 2018, , .		6
85	NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients. Oncolmmunology, 2017, 6, e1137418.	2.1	42
86	Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. Journal of Experimental Medicine, 2017, 214, 491-510.	4.2	66
87	Killer ILCs in the Fat. Immunity, 2017, 46, 169-171.	6.6	1
88	Complement factor P is a ligand for the natural killer cell–activating receptor NKp46. Science Immunology, 2017, 2, .	5.6	103
89	Immune checkpoints on innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 1561-1563.	4.2	18
90	Shifting the Balance of Activating and Inhibitory Natural Killer Receptor Ligands on <i>BRAF</i> V600E Melanoma Lines with Vemurafenib. Cancer Immunology Research, 2017, 5, 582-593.	1.6	17

#	Article	IF	CITATIONS
91	The Ablâ€1 Kinase is Dispensable for <scp>NK</scp> Cell Inhibitory Signalling and is not Involved in Murine <scp>NK</scp> Cell Education. Scandinavian Journal of Immunology, 2017, 86, 135-142.	1.3	8
92	Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more. Seminars in Immunology, 2017, 31, 55-63.	2.7	98
93	Cutting Edge: Murine NK Cells Degranulate and Retain Cytotoxic Function without Store-Operated Calcium Entry. Journal of Immunology, 2017, 199, 1973-1978.	0.4	10
94	Dissection of the role of natural killer cells in atherosclerosis using selective genetic approaches. Atherosclerosis, 2017, 263, e51.	0.4	0
95	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	7.0	504
96	Natural-Killer-like B Cells Display the Phenotypic and Functional Characteristics of Conventional B Cells. Immunity, 2017, 47, 199-200.	6.6	16
97	T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nature Immunology, 2017, 18, 1117-1127.	7.0	99
98	Innate lymphoid cells: major players in inflammatory diseases. Nature Reviews Immunology, 2017, 17, 665-678.	10.6	282
99	Loss of HIF-11± in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nature Communications, 2017, 8, 1597.	5.8	132
100	Host resistance to endotoxic shock requires the neuroendocrine regulation of group 1 innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 3531-3541.	4.2	45
101	FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Frontiers in Immunology, 2017, 8, 123.	2.2	19
102	Editorial: NK Cell Subsets in Health and Disease: New Developments. Frontiers in Immunology, 2017, 8, 1363.	2.2	35
103	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	3.9	115
104	High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors. ELife, 2017, 6, .	2.8	65
105	Differentiation and function of group 3 innate lymphoid cells, from embryo to adult. International Immunology, 2016, 28, 35-42.	1.8	43
106	Manufacturing Natural Killer Cells as Medicinal Products. Frontiers in Immunology, 2016, 7, 504.	2.2	30
107	Murine peripheral NKâ€cell populations originate from siteâ€specific immature NK cells more than from BMâ€derived NK cells. European Journal of Immunology, 2016, 46, 1258-1270.	1.6	12
108	Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Science Signaling, 2016, 9, ra126.	1.6	31

#	Article	IF	CITATIONS
109	NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nature Communications, 2016, 7, 10554.	5.8	40
110	Transforming Growth Factor-β Signaling Guides the Differentiation of Innate Lymphoid Cells in Salivary Glands. Immunity, 2016, 44, 1127-1139.	6.6	202
111	HLA-Fatal attraction. Nature Immunology, 2016, 17, 1012-1014.	7.0	3
112	Structural Insights into the Inhibitory Mechanism of an Antibody against B7-H6, a Stress-Induced Cellular Ligand for the Natural Killer Cell Receptor NKp30. Journal of Molecular Biology, 2016, 428, 4457-4466.	2.0	12
113	Evidence of innate lymphoid cell redundancy in humans. Nature Immunology, 2016, 17, 1291-1299.	7.0	260
114	Transforming growth factor–β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Science Signaling, 2016, 9, ra46.	1.6	88
115	The discontinuity theory of immunity. Science Immunology, 2016, 1, .	5.6	45
116	The evolution of innate lymphoid cells. Nature Immunology, 2016, 17, 790-794.	7.0	140
117	Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. , 2016, 4, 15.		67
118	Cutting Edge: Eomesodermin Is Sufficient To Direct Type 1 Innate Lymphocyte Development into the Conventional NK Lineage. Journal of Immunology, 2016, 196, 1449-1454.	0.4	92
119	The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity, 2016, 44, 103-115.	6.6	101
120	Editorial overview: Innate immunity. Current Opinion in Immunology, 2016, 38, v-vii.	2.4	1
121	Low Circulating Natural Killer Cell Counts are Associated With Severe Disease in Patients With Common Variable Immunodeficiency. EBioMedicine, 2016, 6, 222-230.	2.7	58
122	NK Cell–Specific Gata3 Ablation Identifies the Maturation Program Required for Bone Marrow Exit and Control of Proliferation. Journal of Immunology, 2016, 196, 1753-1767.	0.4	31
123	Innate lymphoid cells: parallel checkpoints and coordinate interactions with T cells. Current Opinion in Immunology, 2016, 38, 86-93.	2.4	24
124	Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nature Immunology, 2016, 17, 179-186.	7.0	211
125	PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget, 2016, 7, 72961-72977.	0.8	258
126	Les cellules innées lymphoÃ⁻des : des nouveaux acteurs de l'immunité. Bulletin De L'Academie Nationale De Medecine, 2016, 200, 561-574.	0.0	0

#	Article	IF	CITATIONS
127	<i>Science Signaling</i> Podcast for 3 May 2016: Innate lymphoid cell plasticity. Science Signaling, 2016, 9, pc10.	1.6	1
128	Severe peripheral blood lymphopenia without NK cell cytotoxicty deficiency is the rule in adult acquired HLH. Pediatric Rheumatology, 2015, 13, .	0.9	1
129	Expression, crystallization and X-ray diffraction analysis of a complex between B7-H6, a tumor cell ligand for the natural cytotoxicity receptor NKp30, and an inhibitory antibody. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 697-701.	0.4	8
130	SHIP1 Intrinsically Regulates NK Cell Signaling and Education, Resulting in Tolerance of an MHC Class I–Mismatched Bone Marrow Graft in Mice. Journal of Immunology, 2015, 194, 2847-2854.	0.4	31
131	Transcription Factor Foxo1 Is a Negative Regulator of Natural Killer Cell Maturation and Function. Immunity, 2015, 42, 457-470.	6.6	141
132	Innate Lymphoid Cells in Cancer. Cancer Immunology Research, 2015, 3, 1109-1114.	1.6	30
133	Shed NKG2D ligand boosts NK cell immunity. Cell Research, 2015, 25, 651-652.	5.7	6
134	B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncolmmunology, 2015, 4, e1001224.	2.1	137
135	Lessons from NK Cell Deficiencies in the Mouse. Current Topics in Microbiology and Immunology, 2015, 395, 173-190.	0.7	9
136	Lung Natural Killer Cells Play a Major Counter-Regulatory Role in Pulmonary Vascular Hyperpermeability After Myocardial Infarction. Circulation Research, 2014, 114, 637-649.	2.0	24
137	Natural cytotoxicity receptors and their ligands. Immunology and Cell Biology, 2014, 92, 221-229.	1.0	229
138	SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nature Communications, 2014, 5, 5108.	5.8	108
139	Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood, 2014, 123, 678-686.	0.6	253
140	Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO Journal, 2014, 33, 1928-1940.	3.5	39
141	Coincidence detection of antibodies and interferon for sensing microbial context. Nature Immunology, 2014, 15, 316-317.	7.0	1
142	Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nature Communications, 2014, 5, 4539.	5.8	156
143	The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nature Immunology, 2014, 15, 749-757.	7.0	484
144	Immunological memory within the innate immune system. EMBO Journal, 2014, 33, 1295-303.	3.5	98

#	Article	IF	CITATIONS
145	Delivering Three Punches to Knockout Intracellular Bacteria. Cell, 2014, 157, 1251-1252.	13.5	4
146	Type I Interferons Protect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1. Immunity, 2014, 40, 961-973.	6.6	199
147	Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1. Blood, 2014, 123, 51-60.	0.6	38
148	The speed of change: towards a discontinuity theory of immunity?. Nature Reviews Immunology, 2013, 13, 764-769.	10.6	136
149	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	6.0	1,580
150	Induction of B7-H6, a ligand for the natural killer cell–activating receptor NKp30, in inflammatory conditions. Blood, 2013, 122, 394-404.	0.6	120
151	Innate lymphoid cells — a proposal for uniform nomenclature. Nature Reviews Immunology, 2013, 13, 145-149.	10.6	2,054
152	Natural Killer Cells Are Required for Extramedullary Hematopoiesis following Murine Cytomegalovirus Infection. Cell Host and Microbe, 2013, 13, 535-545.	5.1	29
153	TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biology, 2013, 15, 818-828.	4.6	99
154	Tuning the threshold of natural killer cell responses. Current Opinion in Immunology, 2013, 25, 53-58.	2.4	81
155	ADAPted secretion of cytokines in NK cells. Nature Immunology, 2013, 14, 1108-1110.	7.0	21
156	T cell regulation of natural killer cells. Journal of Experimental Medicine, 2013, 210, 1065-1068.	4.2	68
157	Nfil3-independent lineage maintenance and antiviral response of natural killer cells. Journal of Experimental Medicine, 2013, 210, 2981-2990.	4.2	123
158	Inborn errors of the development of human natural killer cells. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 589-595.	1.1	24
159	Education of Murine NK Cells Requires Both <i>cis</i> and <i>trans</i> Recognition of MHC Class I Molecules. Journal of Immunology, 2013, 191, 5044-5051.	0.4	39
160	NCR3/NKp30 Contributes to Pathogenesis in Primary Sjögren's Syndrome. Science Translational Medicine, 2013, 5, 195ra96.	5.8	99
161	Factors Associated with Post-Seasonal Serological Titer and Risk Factors for Infection with the Pandemic A/H1N1 Virus in the French General Population. PLoS ONE, 2013, 8, e60127.	1.1	21
162	Mapping of NKp46+ Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues. Frontiers in Immunology, 2012, 3, 344.	2.2	68

#	Article	IF	CITATIONS
163	Protection from Inflammatory Organ Damage in a Murine Model of Hemophagocytic Lymphohistiocytosis Using Treatment with IL-18 Binding Protein. Frontiers in Immunology, 2012, 3, 239.	2.2	60
164	Interferon-Î ³ production by natural killer cells and cytomegalovirus in critically ill patients*. Critical Care Medicine, 2012, 40, 3162-3169.	0.4	50
165	Morbidity and Impaired Quality of Life 30 Months After Chikungunya Infection. Medicine (United) Tj ETQq1 1 0	.784314 rg 0.4	BT /Overlock
166	Differential Responses of Immune Cells to Type I Interferon Contribute to Host Resistance to Viral Infection. Cell Host and Microbe, 2012, 12, 571-584.	5.1	89
167	NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nature Medicine, 2012, 18, 1827-1834.	15.2	164
168	Natural Killer Cell Tolerance: Control by Self or Self-Control?. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007229-a007229.	2.3	24
169	NK Cell Genesis: A Trick of the Trail. Immunity, 2012, 36, 1-3.	6.6	26
170	NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Current Opinion in Immunology, 2012, 24, 239-245.	2.4	176
171	Integrative study of pandemic A/H1N1 influenza infections: design and methods of the CoPanFlu-France cohort. BMC Public Health, 2012, 12, 417.	1.2	15
172	Tuning of Natural Killer Cell Reactivity by NKp46 and Helios Calibrates T Cell Responses. Science, 2012, 335, 344-348.	6.0	190
173	Phenotype and Functions of Natural Killer Cells in Critically-Ill Septic Patients. PLoS ONE, 2012, 7, e50446.	1.1	62
174	Targeting natural killer cells and natural killer T cells in cancer. Nature Reviews Immunology, 2012, 12, 239-252.	10.6	707
175	Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. Journal of Experimental Medicine, 2012, 209, 565-580.	4.2	199
176	Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology, 2012, 55, 244-255.	3.6	119
177	Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. Journal of Clinical Investigation, 2012, 122, 821-832.	3.9	272
178	When NK cells overcome their lack of education. Journal of Clinical Investigation, 2012, 122, 3053-3056.	3.9	11
179	Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18324-18329.	3.3	297
180	Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science, 2011, 331, 44-49.	6.0	2,234

#	Article	IF	CITATIONS
181	G-protein-coupled receptors in control of natural killer cell migration. Trends in Immunology, 2011, 32, 486-492.	2.9	54
182	The 'T-cell-ness' of NK cells: unexpected similarities between NK cells and T cells. International Immunology, 2011, 23, 427-431.	1.8	55
183	Natural Killer Cells: From Basic Research to Treatments. Frontiers in Immunology, 2011, 2, 18.	2.2	47
184	Impact of β2 integrin deficiency on mouse natural killer cell development and function. Blood, 2011, 117, 2874-2882.	0.6	24
185	Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nature Medicine, 2011, 17, 700-707.	15.2	282
186	B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cellular and Molecular Life Sciences, 2011, 68, 3531-3539.	2.4	91
187	Cutting Edge: CD8+ T Cell Priming in the Absence of NK Cells Leads to Enhanced Memory Responses. Journal of Immunology, 2011, 186, 3304-3308.	0.4	123
188	The Role of Natural Killer Cells in Sepsis. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	71
189	Confinement of Activating Receptors at the Plasma Membrane Controls Natural Killer Cell Tolerance. Science Signaling, 2011, 4, ra21.	1.6	122
190	Identity, regulation and <i>in vivo</i> function of gut NKp46 ⁺ RORγt ⁺ and NKp46 ⁺ RORγt ^{â^²} lymphoid cells. EMBO Journal, 2011, 30, 2934-2947.	3.5	154
191	Natural killer cell-based therapies. F1000 Medicine Reports, 2011, 3, 9.	2.9	33
192	Expression of the HLA-C2-specific activating killer-cell Ig-like receptor KIR2DS1 on NK and T cells. Clinical Immunology, 2010, 135, 26-32.	1.4	19
193	Maturation of Mouse NK Cells is a Four-stage Developmental Program. Clinical Immunology, 2010, 135, S48.	1.4	5
194	Natural killer cells in human autoimmune diseases. Immunology, 2010, 131, 451-458.	2.0	125
195	Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5545-5550.	3.3	190
196	Interactions between Human NK Cells and Macrophages in Response to <i>Salmonella</i> Infection. Journal of Immunology, 2009, 182, 4339-4348.	0.4	100
197	Genetic and antibody-mediated reprogramming of natural killer cell missing-self recognition in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12879-12884.	3.3	61
198	NK Cell Responsiveness Is Tuned Commensurate with the Number of Inhibitory Receptors for Self-MHC Class I: The Rheostat Model. Journal of Immunology, 2009, 182, 4572-4580.	0.4	234

#	Article	IF	CITATIONS
199	The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. Journal of Experimental Medicine, 2009, 206, 1495-1503.	4.2	566
200	Natural killer cells remember. Nature, 2009, 457, 544-545.	13.7	15
201	Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunology, 2009, 10, 75-82.	7.0	507
202	Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?. Nature Reviews Immunology, 2009, 9, 229-234.	10.6	155
203	Crosstalk between components of the innate immune system: promoting antiâ€microbial defenses and avoiding immunopathologies. Immunological Reviews, 2009, 227, 129-149.	2.8	64
204	Regulatory Natural Killer Cells: New Players in the IL-10 Anti-Inflammatory Response. Cell Host and Microbe, 2009, 6, 493-495.	5.1	55
205	Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood, 2009, 113, 3119-3129.	0.6	343
206	Maturation of mouse NK cells is a 4-stage developmental program. Blood, 2009, 113, 5488-5496.	0.6	643
207	Preclinical characterization of 1-7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood, 2009, 114, 2667-2677.	0.6	363
208	A novel mucosal RORgammat+NKp46+ cell subset is a source of interleukin-22. F1000 Biology Reports, 2009, 1, 28.	4.0	1
209	Increased diabetes development and decreased function of CD4 ⁺ CD25 ⁺ Treg in the absence of a functional DAP12 adaptor protein. European Journal of Immunology, 2008, 38, 3191-3199.	1.6	8
210	Mouse CD146/MCAM is a marker of natural killer cell maturation. European Journal of Immunology, 2008, 38, 2855-2864.	1.6	44
211	FCRL6 distinguishes mature cytotoxic lymphocytes and is upregulated in patients with B ell chronic lymphocytic leukemia. European Journal of Immunology, 2008, 38, 3159-3166.	1.6	47
212	Intrasplenic trafficking of natural killer cells is redirected by chemokines upon inflammation. European Journal of Immunology, 2008, 38, 2076-2084.	1.6	51
213	Expression of the CD85j (leukocyte Igâ€like receptor 1, Igâ€like transcript 2) receptor for class I major histocompatibility complex molecules in idiopathic inflammatory myopathies. Arthritis and Rheumatism, 2008, 58, 3216-3223.	6.7	14
214	Immunoreceptor tyrosineâ€based inhibition motifs: a quest in the past and future. Immunological Reviews, 2008, 224, 11-43.	2.8	315
215	Functions of natural killer cells. Nature Immunology, 2008, 9, 503-510.	7.0	3,070
216	Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biology, 2008, 9, R17.	13.9	472

#	Article	IF	CITATIONS
217	44 The overexpression of DAP12 leads to gain of osteoclast function in vitro with age-related onset of ostepenia in vivo. Cytokine, 2008, 43, 247.	1.4	0
218	Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State. Science Signaling, 2008, 1, ra11.	1.6	92
219	Strategies of Natural Killer (NK) Cell Recognition and Their Roles in Tumor Immunosurveillance. , 2008, , 37-81.		1
220	Cutting Edge: Priming of NK Cells by IL-18. Journal of Immunology, 2008, 181, 1627-1631.	0.4	280
221	Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. Journal of Experimental Medicine, 2008, 205, 737-737.	4.2	1
222	Sustained NKG2D engagement induces cross-tolerance of multiple distinct NK cell activation pathways. Blood, 2008, 111, 3571-3578.	0.6	154
223	A role for interleukin-12/23 in the maturation of human natural killer and CD56+ T cells in vivo. Blood, 2008, 111, 5008-5016.	0.6	57
224	Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proceedings of the United States of America, 2007, 104, 3384-3389.	3.3	413
225	Natural Killer Cells Promote Early CD8 T Cell Responses against Cytomegalovirus. PLoS Pathogens, 2007, 3, e123.	2.1	161
226	Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. Journal of Experimental Medicine, 2007, 204, 853-863.	4.2	143
227	Selective predisposition to bacterial infections in IRAK-4–deficient children: IRAK-4–dependent TLRs are otherwise redundant in protective immunity. Journal of Experimental Medicine, 2007, 204, 2407-2422.	4.2	374
228	Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood, 2007, 109, 3776-3785.	0.6	227
229	Good News, Bad News for Missing-Self Recognition by NK Cells: Autoimmune Control but Viral Evasion. Immunity, 2007, 26, 549-551.	6.6	12
230	TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science, 2007, 317, 1522-1527.	6.0	970
231	Association of Killer Cell Immunoglobulin-Like Receptor Genes with Hodgkin's Lymphoma in a Familial Study. PLoS ONE, 2007, 2, e406.	1.1	57
232	Germ-line and rearrangedTcrd transcription distinguishbona fide NK cells and NK-like γδ T cells. European Journal of Immunology, 2007, 37, 1442-1452.	1.6	72
233	Features and distribution of CD8 T cells with human leukocyte antigen class I-specific receptor expression in chronic hepatitis C. Hepatology, 2007, 46, 1375-1386.	3.6	28
234	Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunology, 2007, 8, 1337-1344.	7.0	375

#	Article	IF	CITATIONS
235	The trafficking of natural killer cells. Immunological Reviews, 2007, 220, 169-182.	2.8	460
236	Natural killer cells: from CD3â^'NKp46+ to post-genomics meta-analyses. Current Opinion in Immunology, 2007, 19, 365-372.	2.4	117
237	Dissection of the Role of PfEMP1 and ICAM-1 in the Sensing of Plasmodium falciparum-Infected Erythrocytes by Natural Killer Cells. PLoS ONE, 2007, 2, e228.	1.1	46
238	Strategies of Natural Killer Cell Recognition and Signaling. Current Topics in Microbiology and Immunology, 2006, 298, 1-21.	0.7	68
239	Human NK Cell Education by Inhibitory Receptors for MHC Class I. Immunity, 2006, 25, 331-342.	6.6	1,026
240	Multiplicity and plasticity of natural killer cell signaling pathways. Blood, 2006, 107, 2364-2372.	0.6	83
241	Tolerogenic dendritic cells: a KARAP/DAP12–IRF-8/ICSBP balance. Blood, 2006, 107, 2591-2592.	0.6	1
242	Distribution of killer-cell immunoglobulin-like receptor (KIR) in Comoros and Southeast France. Tissue Antigens, 2006, 67, 356-367.	1.0	23
243	Natural killer cells and malaria. Immunological Reviews, 2006, 214, 251-263.	2.8	41
244	NK cell development: Gas matters. Nature Immunology, 2006, 7, 702-704.	7.0	25
245	A novel dendritic cell subset involved in tumor immunosurveillance. Nature Medicine, 2006, 12, 214-219.	15.2	377
246	What is natural in natural killer cells?. Immunology Letters, 2006, 107, 1-7.	1.1	49
247	DAP12 Signaling Regulates Plasmacytoid Dendritic Cell Homeostasis and Down-Modulates Their Function during Viral Infection. Journal of Immunology, 2006, 177, 2908-2916.	0.4	49
248	DAP12 Signaling Directly Augments Proproliferative Cytokine Stimulation of NK Cells during Viral Infections. Journal of Immunology, 2006, 177, 4981-4990.	0.4	68
249	Familial NK Cell Deficiency Associated with Impaired IL-2- and IL-15-Dependent Survival of Lymphocytes. Journal of Immunology, 2006, 177, 8835-8843.	0.4	31
250	A Nomenclature for Signal Regulatory Protein Family Members. Journal of Immunology, 2005, 175, 7788-7789.	0.4	28
251	Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand–expressing tumor cells. Blood, 2005, 106, 1711-1717.	0.6	200
252	Natural-killer cells and dendritic cells: "l'union fait la force― Blood, 2005, 106, 2252-2258.	0.6	520

#	Article	IF	CITATIONS
253	Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nature Immunology, 2005, 6, 17-21.	7.0	153
254	Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of γδT cells. European Journal of Immunology, 2005, 35, 1896-1905.	1.6	26
255	KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. European Journal of Immunology, 2005, 35, 1670-1677.	1.6	123
256	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	1.6	38
257	Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14747-14752.	3.3	141
258	Natural Killer Cell Receptor Signaling Pathway. Science Signaling, 2005, 2005, cm6-cm6.	1.6	10
259	Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13224-13229.	3.3	358
260	Natural Killer Cell Receptor Signaling Pathway in Mammals. Science Signaling, 2005, 2005, cm7-cm7.	1.6	4
261	CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. Journal of Experimental Medicine, 2005, 202, 1075-1085.	4.2	806
262	Natural killer cell–dendritic cell crosstalk in the initiation of immune responses. Expert Opinion on Biological Therapy, 2005, 5, S49-S59.	1.4	99
263	Coordination of activating and inhibitory signals in natural killer cells. Molecular Immunology, 2005, 42, 477-484.	1.0	46
264	Brain and Bone Damage in KARAP/DAP12 Loss-of-Function Mice Correlate with Alterations in Microglia and Osteoclast Lineages. American Journal of Pathology, 2005, 166, 275-286.	1.9	70
265	Coordinated Expression of Ig-Like Inhibitory MHC Class I Receptors and Acquisition of Cytotoxic Function in Human CD8+ T Cells. Journal of Immunology, 2004, 173, 7223-7229.	0.4	111
266	The Membrane-Proximal Immunoreceptor Tyrosine-Based Inhibitory Motif Is Critical for the Inhibitory Signaling Mediated by Siglecs-7 and -9, CD33-Related Siglecs Expressed on Human Monocytes and NK Cells. Journal of Immunology, 2004, 173, 6841-6849.	0.4	164
267	Expansion and Function of CD8+ T Cells Expressing Ly49 Inhibitory Receptors Specific for MHC Class I Molecules. Journal of Immunology, 2004, 173, 3773-3782.	0.4	33
268	Impaired Synaptic Function in the Microglial KARAP/DAP12-Deficient Mouse. Journal of Neuroscience, 2004, 24, 11421-11428.	1.7	189
269	IL-4 Confers NK Stimulatory Capacity to Murine Dendritic Cells: A Signaling Pathway Involving KARAP/DAP12-Triggering Receptor Expressed on Myeloid Cell 2 Molecules. Journal of Immunology, 2004, 172, 5957-5966.	0.4	67
270	Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nature Reviews Immunology, 2004, 4, 190-198.	10.6	210

#	Article	IF	CITATIONS
271	Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. European Journal of Immunology, 2004, 34, 961-971.	1.6	134
272	Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytesin vivo– role of KARAP/DAP12-dependent and -independent pathways. European Journal of Immunology, 2004, 34, 1646-1653.	1.6	75
273	Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. European Journal of Immunology, 2004, 34, 2930-2940.	1.6	67
274	Natural Killer Cell Signaling Pathways. Science, 2004, 306, 1517-1519.	6.0	605
275	A Novel Developmental and Immunodeficiency Syndrome Associated With Intrauterine Growth Retardation and a Lack of Natural Killer Cells. Pediatrics, 2004, 113, 136-141.	1.0	44
276	Cellular aspects of lymphoid differentiation. , 2004, , 92-102.		0
277	Contrasting roles of DAP10 and KARAP/DAP12 signaling adaptors in activation of the RBL-2H3 leukemic mast cell line. European Journal of Immunology, 2003, 33, 3514-3522.	1.6	18
278	Tm1 cells, a subset of T cells with NK cell and memory CD8 T-cell features. Experimental Dermatology, 2003, 12, 915-915.	1.4	0
279	Critical Role of Src and SHP-2 in sst2 Somatostatin Receptor-mediated Activation of SHP-1 and Inhibition of Cell Proliferation. Molecular Biology of the Cell, 2003, 14, 3911-3928.	0.9	75
280	Crystal Structure of the Human Natural Killer Cell Activating Receptor KIR2DS2 (CD158j). Journal of Experimental Medicine, 2003, 197, 933-938.	4.2	74
281	Selective Activation of the c-Jun NH2-terminal Protein Kinase Signaling Pathway by Stimulatory KIR in the Absence of KARAP/DAP12 in CD4+ T Cells. Journal of Experimental Medicine, 2003, 197, 437-449.	4.2	71
282	Syk Regulation of Phosphoinositide 3-Kinase-Dependent NK Cell Function. Journal of Immunology, 2002, 168, 3155-3164.	0.4	105
283	IMMUNOLOGY: Enhanced: A Pathogen Receptor on Natural Killer Cells. Science, 2002, 296, 1248-1249.	6.0	39
284	Pivotal Role of KARAP/DAP12 Adaptor Molecule in the Natural Killer Cell–mediated Resistance to Murine Cytomegalovirus Infection. Journal of Experimental Medicine, 2002, 195, 825-834.	4.2	101
285	CD Antigens 2001. Modern Pathology, 2002, 15, 71-76.	2.9	7
286	Evidence for Early Infection of Nonneoplastic Natural Killer Cells by Epstein-Barr Virus. Journal of Virology, 2002, 76, 11139-11142.	1.5	35
287	Massive inflammatory syndrome and lymphocytic immunodeficiency in KARAP/DAP12-transgenic mice. European Journal of Immunology, 2002, 32, 2653-2663.	1.6	43
288	Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition?. Current Opinion in Immunology, 2002, 14, 306-311.	2.4	188

#	Article	IF	CITATIONS
289	Les cellules natural killer. Revue Francaise Des Laboratoires, 2002, 2002, 23-30.	0.0	3
290	Analysis of donor NK and T cells infused in patients undergoing MHC-matched allogeneic hematopoietic transplantation. Leukemia, 2002, 16, 2259-2266.	3.3	18
291	Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nature Immunology, 2002, 3, 288-294.	7.0	105
292	Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nature Immunology, 2002, 3, 1142-1149.	7.0	408
293	CD antigens 2001. Immunology, 2001, 103, 401-406.	2.0	3
294	Biology of T memory type 1 cells. Immunological Reviews, 2001, 181, 269-278.	2.8	65
295	CD Antigens 2001. Cellular Immunology, 2001, 211, 81-85.	1.4	1
296	Multifaceted roles of MHC class I and MHC class I–like molecules in T cell activation. Nature Immunology, 2001, 2, 198-200.	7.0	77
297	Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nature Immunology, 2001, 2, 430-435.	7.0	153
298	New nomenclature for MHC receptors. Nature Immunology, 2001, 2, 661-661.	7.0	83
299	Regulation of Inhibitory and Activating Killer-Cell Ig-Like Receptor Expression Occurs in T Cells After Termination of TCR Rearrangements. Journal of Immunology, 2001, 166, 2487-2494.	0.4	78
300	Outside-in Signaling Pathway Linked to CD146 Engagement in Human Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 1564-1569.	1.6	117
301	CD antigens 2001. International Immunology, 2001, 13, 1095-1098.	1.8	3
302	IMMUNOLOGY: AgrinA Bridge Between the Nervous and Immune Systems. Science, 2001, 292, 1667-1668.	6.0	20
303	Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B. Journal of Clinical Investigation, 2001, 108, 1041-1050.	3.9	59
304	Les cellules natural killer : tuer ou ne pas tuer ?. Medecine/Sciences, 2001, 17, 504.	0.0	2
305	Characterization of Tm1 cells, a NKR+ subset of memory-phenotype CD8+ T cells. , 2001, , 225-234.		0
306	L'immunologie en question. Medecine/Sciences, 2001, 17, 1103-1104.	0.0	0

#	Article	IF	CITATIONS
307	Association of signal-regulatory proteins \hat{I}^2 with KARAP/DAP-12. European Journal of Immunology, 2000, 30, 2147-2156.	1.6	84
308	Regulation of T cell function by NK cell receptors for classical MHC class I molecules. Current Opinion in Immunology, 2000, 12, 295-300.	2.4	68
309	A high-resolution view of NK-cell receptors: structure and function. Trends in Immunology, 2000, 21, 428-431.	7.5	38
310	Molecular Basis of the Recruitment of the SH2 Domain-containing Inositol 5-Phosphatases SHIP1 and SHIP2 by Fcl ³ RIIB. Journal of Biological Chemistry, 2000, 275, 37357-37364.	1.6	84
311	BIAcore Analysis to Test Phosphopeptide-SH2 Domain Interactions. , 2000, 121, 313-322.		4
312	Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Seminars in Immunology, 2000, 12, 139-147.	2.7	110
313	Early signaling via inhibitory and activating NK receptors. Human Immunology, 2000, 61, 51-64.	1.2	97
314	Combined Natural Killer Cell and Dendritic Cell Functional Deficiency in KARAP/DAP12 Loss-of-Function Mutant Mice. Immunity, 2000, 13, 355-364.	6.6	150
315	Selective expansion of intraepithelial lymphocytes expressing the HLA-E–specific natural killer receptor CD94 in celiac disease. Gastroenterology, 2000, 118, 867-879.	0.6	227
316	Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3400-5.	3.3	41
317	Modulation of T-Cell Functions in KIR2DL3 (CD158b) Transgenic Mice. Blood, 1999, 94, 2396-2402.	0.6	29
318	How to Extinguish Lymphocyte Activation, Immunotyrosine-Based Inhibition Motif (ITIM)-Bearing Molecules a Solution?. Clinical Chemistry and Laboratory Medicine, 1999, 37, 187-91.	1.4	6
319	Differential regulation of killer cell Ig-like receptors and CD94 lectin-like dimers on NK and T lymphocytes from HIV-1-infected individuals. European Journal of Immunology, 1999, 29, 1076-1085.	1.6	67
320	Les cellules NK. Revue Francaise D'allergologie Et D'immunologie Clinique, 1999, 39, 227-236.	0.1	0
321	The PEN5 Epitope Identifies an Oligodendrocyte Precursor Cell Population and Pilocytic Astrocytomas. American Journal of Pathology, 1999, 155, 1261-1269.	1.9	22
322	Differential regulation of killer cell Ig-like receptors and CD94 lectin-like dimers on NK and T lymphocytes from HIV-1-infected individuals. , 1999, 29, 1076.		5
323	Biology of Immunoreceptor Tyrosine-based Inhibition Motif-Bearing Molecules. Current Topics in Microbiology and Immunology, 1999, 244, 1-12.	0.7	41
324	The Enigma of Activating Isoforms of ITIM-Bearing Molecules. Current Topics in Microbiology and Immunology, 1999, 244, 169-176.	0.7	5

#	Article	IF	CITATIONS
325	Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. European Journal of Immunology, 1998, 28, 264-276.	1.6	215
326	SHP2 tyrosine phosphatase associates with SST2 somatostatin receptor. Gastroenterology, 1998, 114, A1160.	0.6	0
327	Activation of Human Endothelial Cells via S-Endo-1 Antigen (CD146) Stimulates the Tyrosine Phosphorylation of Focal Adhesion Kinase p125FAK. Journal of Biological Chemistry, 1998, 273, 26852-26856.	1.6	91
328	Administration of Interleukin 13 to Simian Immunodeficiency Virus-Infected Macaques: Induction of Intestinal Epithelial Atrophy. AIDS Research and Human Retroviruses, 1998, 14, 775-783.	0.5	5
329	Gene Structure, Expression Pattern, and Biological Activity of Mouse Killer Cell Activating Receptor-associated Protein (KARAP)/DAP-12. Journal of Biological Chemistry, 1998, 273, 34115-34119.	1.6	135
330	Flt3 Ligand Promotes the Generation of a Distinct CD34+Human Natural Killer Cell Progenitor That Responds to Interleukin-15. Blood, 1998, 92, 3647-3657.	0.6	198
331	The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2446-2451.	3.3	207
332	Flt3 Ligand Promotes the Generation of a Distinct CD34+Human Natural Killer Cell Progenitor That Responds to Interleukin-15. Blood, 1998, 92, 3647-3657.	0.6	23
333	Régulation de l'activité cellulaire par les phosphatases Medecine/Sciences, 1998, 14, 262.	0.0	0
334	Reconstituted Killer Cell Inhibitory Receptors for Major Histocompatibility Complex Class I Molecules Control Mast Cell Activation Induced via Immunoreceptor Tyrosine-based Activation Motifs. Journal of Biological Chemistry, 1997, 272, 8989-8996.	1.6	111
335	Inhibitory and activatory receptors for MHC class I molecules. Research in Immunology, 1997, 148, 172-179.	0.9	2
336	Natural killer cell acceptance of H-2 mismatch bone marrow grafts in transgenic mice expressing HLA-Cw3 specific killer cell inhibitory receptor (CD158b). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8088-8092.	3.3	44
337	Transduction of cytotoxic signals in natural killer cells: a general model of fine tuning between activatory and inhibitory pathways in lymphocytes. Immunological Reviews, 1997, 155, 205-221.	2.8	110
338	Immunoreceptor tyrosine-based inhibition motifs. Trends in Immunology, 1997, 18, 286-291.	7.5	361
339	Differential association of phosphatases with hematopoietic co-receptors bearing immunoreceptor tyrosine-based inhibition motifs. European Journal of Immunology, 1997, 27, 1994-2000.	1.6	133
340	Similitudes entre les structures tridimensionnelles des récepteurs inhibiteurs des cellules NK (KIR) et les récepteurs des facteurs de croissance hématopoÃ ⁻ étiques. Medecine/Sciences, 1997, 13, 1494.	0.0	0
341	Mouse mast cell gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs and suppresses mast cell activation when coligated with the high-affinity Fc receptor for IgE Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10809-10814.	3.3	150
342	The CD8Î ² polypeptide is required for the recognition of an altered peptide ligand as an agonist. European Journal of Immunology, 1996, 26, 2999-3007.	1.6	18

#	Article	IF	CITATIONS
343	Function of killer cell inhibitory receptors for MHC class I molecules. Immunology Letters, 1996, 54, 145-150.	1.1	9
344	Expression of a NK cell-restricted epitope on decidual large granular lymphocytes. International Immunology, 1996, 8, 1637-1642.	1.8	9
345	CD8β Increases CD8 Coreceptor Function and Participation in TCR–Ligand Binding. Journal of Experimental Medicine, 1996, 184, 2439-2444.	4.2	79
346	Mécanismes moléculaires de la cytotoxicité des cellules NK. Medecine/Sciences, 1996, 12, 458.	0.0	3
347	CD8 modulation of T-cell antigen receptor–ligand interactions on living cytotoxic T lymphocytes. Nature, 1995, 373, 353-356.	13.7	231
348	Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene EMBO Journal, 1995, 14, 4641-4653.	3.5	359
349	Normal development and function of natural killer cells in CD3 epsilon delta 5/delta 5 mutant mice Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7545-7549.	3.3	28
350	Different roles for the Fc epsilon RI gamma chain as a function of the receptor context Journal of Experimental Medicine, 1995, 181, 247-255.	4.2	42
351	TCR/CD3 coupling to Fas-based cytotoxicity Journal of Experimental Medicine, 1995, 181, 781-786.	4.2	196
352	Genetic Dissection of the Transducing Subunits of the T-Cell Antigen Receptor. Annals of the New York Academy of Sciences, 1995, 766, 173-181.	1.8	2
353	Evidence for Involvement of \hat{l}^2 -Glucan-Binding Cell Surface Lectins in Human Natural Killer Cell Function. Cellular Immunology, 1994, 157, 393-402.	1.4	32
354	Association of a 70-kDa tyrosine phosphoprotein with the CD16:ζ:γ complex expressed in human natural killer cells. European Journal of Immunology, 1993, 23, 1872-1876.	1.6	69
355	Developmental regulation of a mucinlike glycoprotein selectively expressed on natural killer cells Journal of Experimental Medicine, 1993, 178, 2023-2033.	4.2	39
356	T cell development in mice lacking the CD3-zeta/eta gene EMBO Journal, 1993, 12, 4347-4355.	3.5	213
357	Signaling function of reconstituted CD16: ζ: γ receptor complex isoforms. International Immunology, 1992, 4, 1313-1323.	1.8	47
358	Structure et fonction du complexe CD16 :ζ :γ des cellules NK. Medecine/Sciences, 1992, 8, 359.	0.0	2
359	Immunoregulatory functions of paf-acether. VI. Dual effect on human B cell proliferation. Lipids, 1991, 26, 1204-1208.	0.7	25
360	CD2 is functionally linked to the ζ-natural killer receptor complex. European Journal of Immunology, 1991, 21, 1077-1080.	1.6	44

#	Article	IF	CITATIONS
361	Immunoregulatory functions of paf-acether. VI. Inhibition of T cell activation via CD3 and potentiation of T cell activation via CD2. International Immunology, 1990, 2, 545-553.	1.8	19
362	Biosynthesis of paf-acether. Paf-acether but not leukotriene C4 production is impaired in cultured macrophages. Biochemical Journal, 1989, 263, 165-171.	1.7	9
363	Immunoregulatory functions of paf-acether II. Decrease of CD2 and CD3 antigen expression. European Journal of Immunology, 1988, 18, 425-430.	1.6	19
364	Production of PAF-acether and leukotrienes by cultured mouse macrophages. Pharmacological Research Communications, 1986, 18, 239-242.	0.2	7
365	Targeting MICA/B with cytotoxic therapeutic antibodies leads to tumor control. Open Research Europe, 0, 1, 107.	2.0	1
366	Targeting MICA/B with cytotoxic therapeutic antibodies leads to tumor control. Open Research Europe, 0, 1, 107.	2.0	1
367	Role of the ITAM-Bearing Receptors Expressed by Natural Killer Cells in Cancer. Frontiers in Immunology, 0, 13, .	2.2	8