Lin Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9675674/publications.pdf Version: 2024-02-01

LIN FAN

#	Article	IF	CITATIONS
1	Moisture-preventing MAPbI3 solar cells with high photovoltaic performance via multiple ligand engineering. Nano Research, 2022, 15, 1375-1382.	10.4	29
2	Photoelectric balance of rear electrode in bifacial perovskite solar cells: Construction of 0D/1D/2D composite electrode based on silver nanowires to boost photovoltaic output. Journal of Power Sources, 2022, 520, 230815.	7.8	7
3	Enhanced photovoltaic output of bifacial perovskite solar cells <i>via</i> tailoring photoelectric balance in rear window layers with 1T-WS ₂ nanosheet engineering. Materials Chemistry Frontiers, 2022, 6, 2061-2071.	5.9	8
4	Interface Dipole Induced Fieldâ€Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008052.	14.9	40
5	Diluted-CdS Quantum Dot-Assisted SnO ₂ Electron Transport Layer with Excellent Conductivity and Suitable Band Alignment for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 16326-16335.	8.0	27
6	Interior/Interface Modification of Textured Perovskite for Enhanced Photovoltaic Outputs of Planar Solar Cells by an In Situ Growth Passivation Technology. ACS Applied Materials & Interfaces, 2021, 13, 39689-39700.	8.0	8
7	Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification. Nano Research, 2021, 14, 2783-2789.	10.4	20
8	A two-fold interfacial electric-field strategy: boosting the performance of electron transport layer-free perovskite solar cells with low-cost and versatile inorganic acid treatment. Journal of Materials Chemistry C, 2021, 9, 12920-12927.	5.5	12
9	Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3 %. Nano Energy, 2020, 67, 104224.	16.0	46
10	Constructing "hillocks―like random-textured absorber for efficient planar perovskite solar cells. Chemical Engineering Journal, 2020, 387, 124091.	12.7	12
11	Novel insights into the role of solvent environment in perovskite solar cells prepared by two-step sequential deposition. Journal of Power Sources, 2020, 480, 228862.	7.8	9
12	Constructing m-TiO2/a-WOx hybrid electron transport layer to boost interfacial charge transfer for efficient perovskite solar cells. Chemical Engineering Journal, 2020, 402, 126303.	12.7	28
13	Hot-Carrier Injection Antennas with Hemispherical AgO <i>_x</i> @Ag Architecture for Boosting the Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41446-41453.	8.0	19
14	Activating Old Materials with New Architecture: Boosting Performance of Perovskite Solar Cells with H ₂ Oâ€Assisted Hierarchical Electron Transporting Layers. Advanced Science, 2019, 6, 1801170.	11.2	35
15	Delayed Annealing Treatment for High-Quality CuSCN: Exploring Its Impact on Bifacial Semitransparent n-i-p Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1575-1584.	5.1	30
16	Elucidating the role of chlorine in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 7423-7432.	10.3	95
17	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 2016, 27, 561-568.	16.0	14

Sequences analyses and expression profiles in tissues and embryos of Japanese flounder (Paralichthys) Tj ETQq0 0 QrgBT /Ovgrlock 10 T

#	Article	IF	CITATIONS
19	Identification and Characterization of a PRDM14 Homolog in Japanese Flounder (Paralichthys) Tj ETQq1 1 0.7843	14.rgBT / 4.1	Overlock 10
20	Growth mechanism and room temperature ferromagnetism property of the Zn1â^'xCrxS nanobelts. Journal of Materials Science: Materials in Electronics, 2014, 25, 2574-2577.	2.2	0
21	Identification and characterization of a Sox2 homolog in the Japanese flounder Paralichthys olivaceus. Gene, 2014, 544, 165-176.	2.2	21