Shuji Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9672098/publications.pdf

Version: 2024-02-01

48315 71102 7,992 138 41 88 citations h-index g-index papers 143 143 143 5745 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Demonstration of ultra-small 5 × 5 <i>μ</i> m2 607 nm InGaN amber micro-light-emitting diodes with an external quantum efficiency over 2%. Applied Physics Letters, 2022, 120, .	3.3	13
2	Designs for III-nitride edge-emitting laser diodes with tunnel junction contacts for low internal optical absorption loss. Optical Engineering, 2022, 61 , .	1.0	0
3	Inverted N-polar blue and blue-green light emitting diodes with high power grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2022, 120, 101104.	3.3	2
4	Red InGaN micro-light-emitting diodes (&gt; 620 nm) with a peak external quantum efficiency of 4.5% using an epitaxial tunnel junction contact. Applied Physics Letters, 2022, 120, .	3.3	33
5	Progress of InGaN-Based Red Micro-Light Emitting Diodes. Crystals, 2022, 12, 541.	2.2	23
6	Low Forward Voltage III-Nitride Red Micro-Light-Emitting Diodes on a Strain Relaxed Template with an InGaN Decomposition Layer. Crystals, 2022, 12, 721.	2.2	9
7	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>In</mml:mi> <mml:mo>,</mml:mo> <mml:mi>Ga</mml:mi> Ga <td>TQq1</td> <td>1 0.784314 rgB)</td>	TQq1	1 0.784314 rgB)
8	mathvariant = normal > N < /mmi:mrow > < /mm	3.4	3
9	Designing Highly Directional Luminescent Phased-Array Metasurfaces with Reciprocity-Based Simulations. ACS Omega, 2022, 7, 22477-22483.	3.5	3
10	Metalorganic chemical vapor deposition-grown tunnel junctions for low forward voltage InGaN light-emitting diodes: epitaxy optimization and light extraction simulation. Semiconductor Science and Technology, 2021, 36, 035019.	2.0	9
11	2DEGs formed in AlN/GaN HEMT structures with AlN grown at low temperature. Applied Physics Letters, 2021, 118, .	3.3	6
12	Demonstration of high efficiency cascaded blue and green micro-light-emitting diodes with independent junction control. Applied Physics Letters, 2021, 118, .	3.3	17
13	Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission. Nature Communications, 2021, 12, 3591.	12.8	31
14	Fully transparent metal organic chemical vapor deposition-grown cascaded InGaN micro-light-emitting diodes with independent junction control. Optics Express, 2021, 29, 22001.	3.4	9
15	Demonstration of high wall-plug efficiency III-nitride micro-light-emitting diodes with MOCVD-grown tunnel junction contacts using chemical treatments. Applied Physics Express, 2021, 14, 086502.	2.4	13
16	Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm. Applied Physics Letters, 2021, 119, .	3.3	39
17	Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers. Applied Physics Letters, 2021, 119, .	3.3	31
18	Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature. Applied Physics Express, 2021, 14, 101002.	2.4	32

#	Article	IF	CITATIONS
19	Patterned Illâ€Nitrides on Porous GaN: Extending Elastic Relaxation from the Nano―to the Micrometer Scale. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100234.	2.4	9
20	Realization of III-Nitride c-Plane microLEDs Emitting from 470 to 645 nm on Semi-Relaxed Substrates Enabled by V-Defect-Free Base Layers. Crystals, 2021, 11, 1168.	2.2	6
21	Enhanced external quantum efficiency of III-nitride micro-light-emitting diodes using vertical and transparent package. Japanese Journal of Applied Physics, 2021, 60, 020905.	1.5	3
22	High efficiency blue InGaN microcavity light-emitting diode with a 205 nm ultra-short cavity. Applied Physics Letters, 2021, 118, 031102.	3.3	3
23	Demonstration of ultra-small (<10 \hat{l} /4m) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Applied Physics Express, 2021, 14, 011004.	2.4	96
24	In GaN-Based microLED Devices Approaching 1% EQE with Red 609 nm Electroluminescence on Semi-Relaxed Substrates. Crystals, 2021, 11 , 1364 .	2.2	30
25	Effects of activation method and temperature to III-nitride micro-light-emitting diodes with tunnel junction contacts grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2021, 119,	3.3	7
26	Reduction of efficiency droop in $<$ i> $<$ i $>$ c $<$ i $>$ -plane InGaN/GaN light-emitting diodes using a thick single quantum well with doped barriers. Applied Physics Letters, 2021, 119, .	3.3	10
27	Properties of AlN/GaN Heterostructures Grown at Low Growth Temperatures with Ammonia and Dimethylhydrazine. Crystals, 2021, 11, 1412.	2.2	2
28	High-temperature electroluminescence properties of InGaN red 40 × 40 <i>μ</i> m2 micro-light-emitting diodes with a peak external quantum efficiency of 3.2%. Applied Physics Letters, 2021, 119, .	3.3	21
29	MOCVD Growth and Characterization of InN Quantum Dots. Physica Status Solidi (B): Basic Research, 2020, 257, 1900508.	1.5	7
30	Inhomogeneous Current Injection and Filamentary Lasing of Semipolar (2021Â⁻) Blue GaNâ€Based Verticalâ€Cavity Surfaceâ€Emitting Lasers with Buried Tunnel Junctions. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900718.	1.8	14
31	Reviewâ€"Progress in High Performance III-Nitride Micro-Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2020, 9, 015012.	1.8	110
32	Research Toward a Heterogeneously Integrated InGaN Laser on Silicon. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900770.	1.8	11
33	Color-tunable &lt; 10 <i> μ </i> m square InGaN micro-LEDs on compliant GaN-on-porous-GaN pseudo-substrates. Applied Physics Letters, 2020, 117, .	3.3	44
34	Transmission Geometry Laser Lighting with a Compact Emitter. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000391.	1.8	4
35	Method of growing elastically relaxed crack-free AlGaN on GaN as substrates for ultra-wide bandgap devices using porous GaN. Applied Physics Letters, 2020, 117, .	3.3	15
36	Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nature Photonics, 2020, 14, 543-548.	31.4	64

#	Article	IF	CITATIONS
37	Flow modulation metalorganic vapor phase epitaxy of GaN at temperatures below 600 °C. Semiconductor Science and Technology, 2020, 35, 095014.	2.0	7
38	Room-Temperature Continuous-Wave Electrically Driven Semipolar (20211) Blue Laser Diodes Heteroepitaxially Grown on a Sapphire Substrate. ACS Photonics, 2020, 7, 1662-1666.	6.6	11
39	Growth of strain-relaxed InGaN on micrometer-sized patterned compliant GaN pseudo-substrates. Applied Physics Letters, 2020, 116, .	3.3	38
40	Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Applied Physics Letters, 2020, 116 , .	3.3	94
41	AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates. ACS Photonics, 2020, 7, 554-561.	6.6	59
42	Metalorganic chemical vapor deposition grown n-InGaN/n-GaN tunnel junctions for micro-light-emitting diodes with very low forward voltage. Semiconductor Science and Technology, 2020, 35, 125023.	2.0	23
43	Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Optics Express, 2020, 28, 5787.	3.4	105
44	Size-independent low voltage of InGaN micro-light-emitting diodes with epitaxial tunnel junctions using selective area growth by metalorganic chemical vapor deposition. Optics Express, 2020, 28, 18707.	3.4	26
45	Violet semipolar (20-2-1) InGaN microcavity light-emitting diode with a 200â€nm ultra-short cavity length. Optics Express, 2020, 28, 29991.	3.4	8
46	Compliant Micron-Sized Patterned InGaN Pseudo-Substrates Utilizing Porous GaN. Materials, 2020, 13, 213.	2.9	22
47	Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Applied Physics Express, 2019, 12, 097004.	2.4	132
48	Direct measurement of hot-carrier generation in a semiconductor barrier heterostructure: Identification of the dominant mechanism for thermal droop. Physical Review B, 2019, 100, .	3.2	16
49	Properties of N-polar InGaN/GaN quantum wells grown with triethyl gallium and triethyl indium as precursors. Semiconductor Science and Technology, 2019, 34, 075017.	2.0	9
50	Demonstration of GaN-based vertical-cavity surface-emitting lasers with buried tunnel junction contacts. Optics Express, 2019, 27, 31621.	3.4	33
51	Micro-light-emitting diodes with Ill–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition. Applied Physics Express, 2018, 11, 012102.	2.4	59
52	Optical Gain and Loss Measurements of Semipolar III-nitride Laser Diodes with ITO/thin-p-GaN Cladding Layers. , 2018, , .		1
53	Investigation of Mg $\langle i \rangle \hat{l} \langle i \rangle$ -doping for low resistance N-polar p-GaN films grown at reduced temperatures by MOCVD. Semiconductor Science and Technology, 2018, 33, 095014.	2.0	11
54	High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Optics Express, 2018, 26, 21324.	3.4	213

#	Article	IF	Citations
55	Optoelectronic properties of doped hydrothermal ZnO thin films. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600941.	1.8	3
56	Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Applied Physics Express, 2017, 10, 032101.	2.4	169
57	Indium segregation in N-polar InGaN quantum wells evidenced by energy dispersive X-ray spectroscopy and atom probe tomography. Applied Physics Letters, 2017, 110, .	3.3	34
58	Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices. Journal of Applied Physics, 2017, 121, 185707.	2.5	18
59	Nonpolar GaN-based vertical-cavity surface-emitting lasers. , 2017, , .		1
60	CW operation of highâ€power blue laser diodes with polished facets on semiâ€polar GaN substrates. Electronics Letters, 2016, 52, 2003-2005.	1.0	7
61	High luminous efficacy green light-emitting diodes with AlGaN cap layer. Optics Express, 2016, 24, 17868.	3.4	74
62	Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction. Applied Physics Letters, 2016, 109, .	3.3	65
63	Polarization field screening in thick (0001) InGaN/GaN single quantum well light-emitting diodes. Applied Physics Letters, 2016, 108, .	3.3	33
64	High speed performance of III-nitride laser diode grown on (2021) semipolar plane for visible light communication. , 2016, , .		4
65	Enhancing light extraction from III-nitride devices using moth-eye nanostructures formed by colloidal lithography. , 2016, , .		0
66	Development of c-plane thin-film flip-chip LEDs fabricated by photoelectrochemical (PEC) liftoff. , 2016, , .		0
67	Hybrid MOCVD/MBE GaN tunnel junction LEDs with greater than 70% wall plug efficiency. , 2016, , .		1
68	Estimation of roughness-induced scattering losses in III-nitride laser diodes with a photoelectrochemically etched current aperture (Phys. Status Solidi A 4∕2016). Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1096-1096.	1.8	0
69	High-speed performance of III-nitride 410 nm ridge laser diode on (202Ì,,1Ì,,) plane for visible light communication. , 2016, , .		1
70	Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to â^¼1 W. Applied Physics Express, 2016, 9, 102102.	2.4	26
71	Estimation of roughness-induced scattering losses in III-nitride laser diodes with a photoelectrochemically etched current aperture. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 953-957.	1.8	2
72	Highâ€power LEDs using Gaâ€doped ZnO currentâ€spreading layers. Electronics Letters, 2016, 52, 304-306.	1.0	16

#	Article	IF	Citations
73	Hybrid tunnel junction contacts to III–nitride light-emitting diodes. Applied Physics Express, 2016, 9, 022102.	2.4	105
74	$2.6~\mathrm{GHz}$ high-speed visible light communication of 450 nm GaN laser diode by direct modulation. , $2015,$, .		5
75	2.6 GHz high-speed visible light communication of 450 nm GaN laser diode by direct modulation. , 2015, ,		2
76	Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on ($112\hat{A}^-2$) semipolar versus (0001) polar planes. Applied Physics Letters, 2014, 104, .	3.3	29
77	High-power low-droop violet semipolar (303 $\hat{A}^-1\hat{A}^-$) InGaN/GaN light-emitting diodes with thick active layer design. Applied Physics Letters, 2014, 105, .	3.3	55
78	Blue and aquamarine stress-relaxed semipolar (112 \hat{A} -2) laser diodes. Applied Physics Letters, 2013, 103, .	3.3	11
79	Comparison of Polished and Dry Etched Semipolar \$(11ar{2}2)\$ III-Nitride Laser Facets. IEEE Photonics Technology Letters, 2013, 25, 2105-2107.	2.5	6
80	$Semipolar \$(\{hbox\{20\}\}ar\{\{hbox\{2\}\}\}ar\{\{hbox\{1\}\}\})\$ In GaN/GaN \ Light-Emitting \ Diodes \ for \ High-Efficiency \ Solid-State \ Lighting. \ Journal \ of \ Display \ Technology, 2013, 9, 190-198.$	1.2	316
81	GaN-based VCSEL fabricated on nonpolar GaN substrates. , 2013, , .		1
82	Suppressing void defects in long wavelength semipolar (202 $\hat{A}^-1\hat{A}^-$) InGaN quantum wells by growth rate optimization. Applied Physics Letters, 2013, 102, .	3.3	26
83	Morphological evolution of InGaN/GaN light-emitting diodes grown on free-standing m-plane GaN substrates. Journal of Applied Physics, 2013, 113, 063504.	2.5	11
84	Gallium nitride based light emitting diodes (LEDs) for energy efficient lighting and displays. , 2013, , .		3
85	Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN. Applied Physics Letters, 2013, 103, 232108.	3.3	11
86	Efficient and stable laser-driven white lighting. AIP Advances, 2013, 3, .	1.3	151
87	Assessment of deep level defects in <i>m</i> plane GaN grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2012, 100, .	3.3	16
88	Heterogeneous integration of InGaN and Silicon solar cells for enhanced energy harvesting. , 2012, , .		0
89	Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. Applied Physics Letters, 2012, 100, .	3.3	168
90	Latest performance of GaN-based nonpolar/semipolar emitting devices. , 2012, , .		0

#	Article	IF	CITATIONS
91	444.9 nm semipolar (112Â⁻2) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer. Applied Physics Letters, 2012, 100, .	3.3	59
92	Stress relaxation and critical thickness for misfit dislocation formation in ($101\hat{A}^-0$) and ($3031\hat{A}^-$) InGaN/GaN heteroepitaxy. Applied Physics Letters, 2012, 100, 171917.	3.3	32
93	High-brightness polarized light-emitting diodes. Light: Science and Applications, 2012, 1, e22-e22.	16.6	217
94	Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting. Applied Physics Letters, 2011, 99, .	3.3	202
95	Misfit dislocation formation via pre-existing threading dislocation glide in (112 \hat{A}^- 2) semipolar heteroepitaxy. Applied Physics Letters, 2011, 99, .	3.3	50
96	High optical polarization ratio from semipolar (202 $\hat{A}^-1\hat{A}^-$) blue-green InGaN/GaN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	75
97	Blue InGaN/GaN laser diodes grown on (33\$ ar 3 ar 1 \$) freeâ€standing GaN substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2390-2392.	0.8	7
98	Effect of nâ€AlGaN cleave assistance layers on the morphology of ⟨i⟩c⟨/i⟩ â€plane cleaved facets for ⟨i⟩m⟨/i⟩ â€plane InGaN/GaN laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2226-2228.	0.8	2
99	High-power blue-violet AlGaN-cladding-free <i>m</i> -plane InGaN/GaN laser diodes. Applied Physics Letters, 2011, 99, .	3.3	30
100	Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Applied Physics Letters, $2011, 98, \ldots$	3.3	67
101	Atom probe analysis of interfacial abruptness and clustering within a single InxGa1â^'xN quantum well device on semipolar (101Â-1Â-) GaN substrate. Applied Physics Letters, 2011, 98, 191903.	3.3	59
102	Determination of internal parameters for AlGaN-cladding-free $<$ i>m-plane InGaN/GaN laser diodes. Applied Physics Letters, 2011, 99, .	3.3	44
103	Effects of Growth Temperature and Postgrowth Annealing on Inhomogeneous Luminescence Characteristics of Green-Emitting InGaN Films. Journal of Electronic Materials, 2010, 39, 15-20.	2.2	3
104	Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges. IEEE Transactions on Electron Devices, 2010, 57, 88-100.	3.0	230
105	Polarization field crossover in semiâ€polar InGaN/GaN single quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2378-2381.	0.8	5
106	Origin of pyramidal hillocks on GaN thin films grown on free-standing m-plane GaN substrates. Applied Physics Letters, 2010, 96, .	3.3	45
107	Photoluminescence and positron annihilation studies on Mg-doped nitrogen-polarity semipolar ($101\hat{A}^-1\hat{A}^-$) GaN heteroepitaxial layers grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2010, 96, 091913.	3.3	9
108	Dynamics of polarized photoluminescence in m-plane InGaN/GaN quantum wells. Journal of Applied Physics, 2010, 108, 023101.	2.5	27

#	Article	IF	Citations
109	Carrier localization in m-plane InGaN/GaN quantum wells probed by scanning near field optical spectroscopy. Applied Physics Letters, 2010, 97, 151106.	3.3	40
110	Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes. Applied Physics Letters, 2010, 96, .	3.3	66
111	Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Applied Physics Letters, 2009, 94, 061116.	3.3	181
112	m-plane pure blue laser diodes with p-GaN/n-AlGaN-based asymmetric cladding and InGaN-based wave-guiding layers. Applied Physics Letters, 2009, 95, 081110.	3.3	20
113	Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2009, 48, 071003.	1.5	31
114	Determination of polarization field in a semipolar (112Â-2)â€^InGaâ^•GaN single quantum well using Franz–Keldysh oscillations in electroreflectance. Applied Physics Letters, 2009, 94, .	3.3	27
115	Geometrical Characteristics and Surface Polarity of Inclined Crystallographic Planes of the Wurtzite and Zincblende Structures. Journal of Electronic Materials, 2009, 38, 756-760.	2.2	21
116	Recent progress in nonpolar LEDs as polarized light emitters. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 203-205.	1.8	9
117	Prospects for LED lighting. Nature Photonics, 2009, 3, 180-182.	31.4	1,847
118	The Dawn of Miniature Green Lasers. Scientific American, 2009, 300, 70-75.	1.0	7
119	Characterization of blue-green m-plane InGaN light emitting diodes. Applied Physics Letters, 2009, 94, 261108.	3.3	83
120	Unambiguous evidence of the existence of polarization field crossover in a semipolar InGaN/GaN single quantum well. Applied Physics Letters, 2009, 95, .	3.3	44
121	Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al,ln)GaN epitaxial layers grown on semipolar ($112 \hat{A}^-2$) GaN free standing substrates. Applied Physics Letters, 2009, 95, .	3.3	98
122	InGaN/GaN laser diodes on semipolar (10) bulk GaN substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2108-2110.	0.8	3
123	Improved quality nonpolar <i>a</i> â€plane GaN/AlGaN UV LEDs grown with sidewall lateral epitaxial overgrowth (SLEO). Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1705-1712.	1.8	6
124	Optical properties of yellow light-emitting diodes grown on semipolar (112 \hat{A}^- 2) bulk GaN substrates. Applied Physics Letters, 2008, 92, .	3.3	167
125	GaN-based solid state lighting. , 2008, , .		0
126	Dichromatic color tuning with InGaN-based light-emitting diodes. Applied Physics Letters, 2008, 93, 121112.	3.3	8

#	ARTICLE	IF	CITATIONS
127	Time-resolved optical studies of InGaN LED structures grown on semipolar and nonpolar bulk GaN substrates. , 2008, , .		O
128	63.4: <i>Invited Paper</i> : Development and Application Prospects of InGaNâ€based Optoelectronic Devices Prepared in Nonpolar Orientations. Digest of Technical Papers SID International Symposium, 2008, 39, 969-971.	0.3	0
129	Visible resonant modes in GaN-based photonic crystal membrane cavities. Applied Physics Letters, 2006, 88, 031111.	3.3	48
130	Intensity dependent time-resolved photoluminescence studies of GaN/AlGaN multiple quantum wells of varying well width on laterally overgrowna-plane and planarc-plane GaN. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 846-849.	1.8	11
131	Growth and characterization of semipolar InGaN/GaN multiple quantum wells and light-emitting diodes on (10 11) GaN templates. Materials Research Society Symposia Proceedings, 2005, 892, 127.	0.1	0
132	A semipolar (10-1-3) InGaN/GaN green light emitting diode. Materials Research Society Symposia Proceedings, 2005, 892, 418.	0.1	1
133	Free-standing, optically pumped, GaNâ̂·InGaN microdisk lasers fabricated by photoelectrochemical etching. Applied Physics Letters, 2004, 85, 5179-5181.	3.3	78
134	Removal of thick (>100nm) InGaN layers for optical devices using band-gap-selective photoelectrochemical etching. Applied Physics Letters, 2004, 85, 762-764.	3.3	48
135	Higher efficiency InGaN laser diodes with an improved quantum well capping configuration. Applied Physics Letters, 2002, 81, 4275-4277.	3.3	50
136	Exciton localization in InGaN quantum well devices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2204.	1.6	227
137	Luminescence spectra from InGaN multiquantum wells heavily doped with Si. Applied Physics Letters, 1998, 72, 3329-3331.	3.3	82
138	Highâ€power InGaN/GaN doubleâ€heterostructure violet light emitting diodes. Applied Physics Letters, 1993, 62, 2390-2392.	3.3	638