Shiqing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9670994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MPI8 is Potent against SARSâ€CoVâ€2 by Inhibiting Dually and Selectively the SARSâ€CoVâ€2 Main Protease and the Host Cathepsin L**. ChemMedChem, 2022, 17, .	3.2	41
2	Drug Repurposing for the SARSâ€CoVâ€⊋ Papain‣ike Protease. ChemMedChem, 2022, 17, .	3.2	29
3	Lateâ€Stage Functionalization and Characterization of Drugs by Highâ€Throughput Desorption Electrospray Ionization Mass Spectrometry. ChemPlusChem, 2022, 87, e202100449.	2.8	16
4	A Reversible Chemogenetic Switch for Chimeric Antigen Receptor Tâ€Cells**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
5	Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C–C Coupling and C–H Arylation through <i>in Situ</i> Anodically Generated Cationic Pd. Journal of the American Chemical Society, 2022, 144, 1306-1312.	13.7	13
6	The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. Journal of Molecular Biology, 2022, 434, 167453.	4.2	9
7	Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Central Science, 2022, 8, 192-204.	11.3	30
8	Titelbild: A Reversible Chemogenetic Switch for Chimeric Antigen Receptor Tâ€Cells (Angew. Chem.) Tj ETQq0 0	0 rgBT /0 2.0	verlock 10 T

9	An Enhanced Hybrid Screening Approach to Identify Potent Inhibitors for the SARS-CoV-2 Main Protease From the NCI Compound Library. Frontiers in Chemistry, 2022, 10, 816576.	3.6	6
10	A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds. Journal of Molecular Biology, 2022, 434, 167534.	4.2	5
11	Repurposing Halicin as a potent covalent inhibitor for the SARS-CoV-2 main protease. Current Research in Chemical Biology, 2022, 2, 100025.	2.9	6
12	Accurate Mass Identification of an Interfering Water Adduct and Strategies in Development and Validation of an LC-MS/MS Method for Quantification of MPI8, a Potent SARS-CoV-2 Main Protease Inhibitor, in Rat Plasma in Pharmacokinetic Studies. Pharmaceuticals, 2022, 15, 676.	3.8	1
13	Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. Journal of Medicinal Chemistry, 2022, 65, 8686-8698.	6.4	63
14	A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114596.	5.5	24
15	A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114570.	5.5	23
16	A Quick Route to Multiple Highly Potent SARS oVâ€2 Main Protease Inhibitors**. ChemMedChem, 2021, 16, 942-948.	3.2	92
17	Bepridil is potent against SARS-CoV-2 in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	80
18	Discovery of Selective Small-Molecule Inhibitors for the ENL YEATS Domain. Journal of Medicinal Chemistry, 2021, 64, 10997-11013.	6.4	20

Shiqing Xu

#	Article	IF	CITATIONS
19	Chemo- and Stereoselective Dearomative Coupling of Indoles and Bielectrophilic Î ² -Imino Boronic Esters via Imine-Induced 1,2-Boronate Migration. Organic Letters, 2021, 23, 8984-8988.	4.6	4
20	Accelerating Electrochemical Reactions in a Voltageâ€Controlled Interfacial Microreactor. Angewandte Chemie - International Edition, 2020, 59, 19862-19867.	13.8	34
21	Accelerating Electrochemical Reactions in a Voltageâ€Controlled Interfacial Microreactor. Angewandte Chemie, 2020, 132, 20034-20039.	2.0	5
22	Expressed Protein Ligation without Intein. Journal of the American Chemical Society, 2020, 142, 7047-7054.	13.7	28
23	An amber obligate active site-directed ligand evolution technique for phage display. Nature Communications, 2020, 11, 1392.	12.8	25
24	Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019â€nCoV. ChemBioChem, 2020, 21, 730-738.	2.6	612
25	Highly Enantiospecific Borylation for Chiral αâ€Amino Tertiary Boronic Esters. Angewandte Chemie, 2018, 130, 15358-15362.	2.0	3
26	Highly Enantiospecific Borylation for Chiral αâ€Amino Tertiary Boronic Esters. Angewandte Chemie - International Edition, 2018, 57, 15138-15142.	13.8	20
27	Asymmetric Synthesis of Chiral Cyclopentanes Bearing an Allâ€Carbon Quaternary Stereocenter by Zirconiumâ€Catalyzed Double Carboalumination. Angewandte Chemie, 2017, 129, 11660-11663.	2.0	1
28	Asymmetric Synthesis of Chiral Cyclopentanes Bearing an Allâ€Carbon Quaternary Stereocenter by Zirconiumâ€Catalyzed Double Carboalumination. Angewandte Chemie - International Edition, 2017, 56, 11502-11505.	13.8	10
29	One‣tep Homologation for the Catalytic Asymmetric Synthesis of Deoxypropionates. Chemistry - A European Journal, 2017, 23, 149-156.	3.3	8
30	Zirconium-Catalyzed Asymmetric Carboalumination of Unactivated Terminal Alkenes. Accounts of Chemical Research, 2016, 49, 2158-2168.	15.6	52
31	Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of >99% ee. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 369-393.	3.8	4
32	Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid. Angewandte Chemie - International Edition, 2015, 54, 9319-9322.	13.8	29
33	A novel highly enantio- and diastereoselective synthesis of vitamin E side-chain. Tetrahedron Letters, 2015, 56, 3346-3348.	1.4	16
34	Syntheses of Chiral Heterocyclic Compounds via Zirconium-Catalyzed Asymmetric Carboalumination of Alkynes (ZACA Reaction). Heterocycles, 2014, 88, 845.	0.7	8
35	Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Science and Technology of Advanced Materials, 2014, 15, 044201.	6.1	111
36	Frontispiece: Enantioselective Synthesis of Chiral Isotopomers of 1-Alkanols by a ZACA-Cu-Catalyzed Cross-Coupling Protocol. Chemistry - A European Journal, 2014, 20, n/a-n/a.	3.3	0

Shiqing Xu

#	Article	IF	CITATIONS
37	Enantioselective Synthesis of Chiral Isotopomers of 1â€Alkanols by a ZACA–Cuâ€Catalyzed Crossâ€Coupling Protocol. Chemistry - A European Journal, 2014, 20, 16060-16064.	3.3	10
38	Onâ€Line Reaction Monitoring and Mechanistic Studies by Mass Spectrometry: Negishi Cross oupling, Hydrogenolysis, and Reductive Amination. Angewandte Chemie - International Edition, 2014, 53, 5931-5935.	13.8	87
39	Highly enantioselective synthesis of γ-, Î⁻-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8368-8373.	7.1	29
40	Search for Highly Efficient, Stereoselective, and Practical Synthesis of Complex Organic Compounds of Medicinal Importance as Exemplified by the Synthesis of the C21C37 Fragment of Amphotericinâ€B. Chemistry - A European Journal, 2013, 19, 12938-12942.	3.3	4
41	Widely Applicable Synthesis of Enantiomerically Pure Tertiary Alkylâ€Containing 1â€Alkanols by Zirconiumâ€Catalyzed Asymmetric Carboalumination of Alkenes and Palladium―or Copperâ€Catalyzed Crossâ€Coupling. Chemistry - an Asian Journal, 2013, 8, 1829-1835.	3.3	25
42	Back Cover: Widely Applicable Synthesis of Enantiomerically Pure Tertiary Alkylâ€Containing 1â€Alkanols by Zirconiumâ€Catalyzed Asymmetric Carboalumination of Alkenes and Palladium―or Copperâ€Catalyzed Crossâ€Coupling (Chem. Asian J. 8/2013). Chemistry - an Asian Journal, 2013, 8, 1602-1924.	3.3	0
43	Pd-catalyzed cross-coupling reactions exhibiting catalyst turnover numbers (TONs) exceeding one million. Arkivoc, 2013, 2012, 242-252.	0.5	4
44	Anti-AIDS agents 87. New bio-isosteric dicamphanoyl-dihydropyranochromone (DCP) and dicamphanoyl-khellactone (DCK) analogues with potent anti-HIV activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5831-5834.	2.2	18
45	Highly (≥98%) Stereo―and Regioselective Trisubstituted Alkene Synthesis of Wide Applicability <i>via</i> 1â€Haloâ€1â€elkyne Hydro―boration–Tandem Negishi–Suzuki Coupling or Organoborate Migra Insertion. Advanced Synthesis and Catalysis, 2011, 353, 2981-2987.	to#y3	60
46	Highly (≥98 %) Selective Trisubstituted Alkene Synthesis of Wide Applicability via Fluorideâ€Promoted Pd atalyzed Crossâ€Coupling of Alkenylboranes. Israel Journal of Chemistry, 2010, 50, 696-701.	2.3	17
47	Anti-AIDS agents 84. Synthesis and anti-human immunodeficiency virus (HIV) activity of 2′-monomethyl-4-methyl- and 1′-thia-4-methyl-(3′R,4′R)-3′,4′-di-O-(S)-camphanoyl-(+)-cis-khellac analogsâ~†. Bioorganic and Medicinal Chemistry, 2010, 18, 7203-7211.	ctane (DC	K)10
48	9-Isopropenyl-4-methyl-2H-thieno[2,3-h]chromen-2-one. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1311-o1311.	0.2	0
49	Unexpected Rearrangement in the Reaction of 7â€Mercaptoâ€4â€methylcoumarin with 1â€Mono―and 1,1â€D Propargyl Alcohols. Synthetic Communications, 2007, 37, 3801-3808	imethyl 2.1	3
50	A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angewandte Chemie, 0, , .	2.0	0