List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-Cyclodextrin-containing polymer treatment of cutaneous lupus and influenza improves outcomes. Molecular Therapy, 2022, 30, 845-854.	8.2	5
2	DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials, 2022, 283, 121393.	11.4	34
3	Polyethylene Glycolâ€Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. Advanced Science, 2022, 9, e2103672.	11.2	20
4	Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. Journal of Controlled Release, 2022, 343, 267-276.	9.9	15
5	Oncolytic viruses in melanoma. Frontiers in Bioscience, 2022, 27, 063.	2.1	12
6	Generation of Tumor Targeted Dendritic Cell Vaccines with Improved Immunogenic and Migratory Phenotype. Methods in Molecular Biology, 2022, 2410, 609-626.	0.9	2
7	Suppression of Fibrinolysis and Hypercoagulability, Severity of Hypoxemia, and Mortality in COVID-19 Patients: A Retrospective Cohort Study. Anesthesiology, 2022, 137, 67-78.	2.5	8
8	The <i>In Vitro</i> Differentiation of Human CD141+CLEC9A+ Dendritic Cells from Mobilized Peripheral Blood CD34+ Hematopoietic Stem Cells. Current Protocols, 2022, 2, e410.	2.9	5
9	Epigenetic STING silencing is developmentally conserved in gliomas and can be rescued by methyltransferase inhibition. Cancer Cell, 2022, 40, 439-440.	16.8	27
10	Reproducibility of outcomes in sequential trials using CMV-targeted dendritic cell vaccination for glioblastoma Journal of Clinical Oncology, 2022, 40, 2005-2005.	1.6	5
11	Characterization of Sentinel Lymph Node Immune Signatures and Implications for Risk Stratification for Adjuvant Therapy in Melanoma. Annals of Surgical Oncology, 2021, 28, 3501-3510.	1.5	13
12	Dissecting the immune landscape of tumor draining lymph nodes in melanoma with high-plex spatially resolved protein detection. Cancer Immunology, Immunotherapy, 2021, 70, 475-483.	4.2	6
13	A conjoined universal helper epitope can unveil antitumor effects of a neoantigen vaccine targeting an MHC class I-restricted neoepitope. Npj Vaccines, 2021, 6, 12.	6.0	8
14	Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nature Communications, 2021, 12, 352.	12.8	77
15	Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling. Nature Communications, 2021, 12, 1858.	12.8	47
16	Key Pathogenic Factors in Coronavirus Disease 2019–Associated Coagulopathy and Acute Lung Injury Highlighted in a Patient With Copresentation of Acute Myelocytic Leukemia: A Case Report. A&A Practice, 2021, 15, e01432.	0.4	1
17	Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. , 2021, 9, e002203.		44
18	Controlling cancer-induced inflammation with a nucleic acid scavenger prevents lung metastasis in murine models of breast cancer. Molecular Therapy, 2021, 29, 1772-1781.	8.2	18

#	Article	IF	CITATIONS
19	Resetting the tumor microenvironment to favor anti-tumor immunity after local ablation Journal of Clinical Oncology, 2021, 39, 2561-2561.	1.6	1
20	Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Science Advances, 2021, 7, .	10.3	42
21	Plasmonic gold nanostars for synergistic photoimmunotherapy to treat cancer. Nanophotonics, 2021, 10, 3295-3302.	6.0	8
22	Breast cancer-derived DAMPs enhance cell invasion and metastasis, while nucleic acid scavengers mitigate these effects. Molecular Therapy - Nucleic Acids, 2021, 26, 1-10.	5.1	11
23	Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nature Communications, 2020, 11, 524.	12.8	29
24	Antigen-loaded monocyte administration induces potent therapeutic antitumor T cell responses. Journal of Clinical Investigation, 2020, 130, 774-788.	8.2	47
25	Blocking pro-invasive signaling and inflammatory activation in triple-negative breast cancer with nucleic-acid scavengers (NASs) Journal of Clinical Oncology, 2020, 38, e13096-e13096.	1.6	0
26	Examining Peripheral and Tumor Cellular Immunome in Patients With Cancer. Frontiers in Immunology, 2019, 10, 1767.	4.8	44
27	Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. , 2019, 7, 142.		31
28	Can Exercise-Induced Modulation of the Tumor Physiologic Microenvironment Improve Antitumor Immunity?. Cancer Research, 2019, 79, 2447-2456.	0.9	41
29	ATIM-27. TUMOR MUTATIONAL BURDEN PREDICTS RESPONSE TO ONCOLYTIC POLIO/RHINOVIRUS RECOMBINANT (PVSRIPO) IN MALIGNANT GLIOMA PATIENTS: ASSESSMENT OF TRANSCRIPTIONAL AND IMMUNOLOGICAL CORRELATES. Neuro-Oncology, 2019, 21, vi7-vi7.	1.2	5
30	Understanding the peripheral cellular immunome in patients with breast cancer Journal of Clinical Oncology, 2019, 37, 7-7.	1.6	0
31	Sipuleucel-T to modify the B7-H3 immune checkpoint in men with castrate resistant prostate cancer Journal of Clinical Oncology, 2019, 37, 273-273.	1.6	0
32	Early Stage HER2-Positive Breast Cancers Not Achieving a pCR From Neoadjuvant Trastuzumab- or Pertuzumab-Based Regimens Have an Immunosuppressive Phenotype. Clinical Breast Cancer, 2018, 18, 410-417.	2.4	24
33	Paracrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell Tolerization. Immunity, 2018, 48, 147-160.e7.	14.3	185
34	Dendritic Cells Enhance Polyfunctionality of Adoptively Transferred T Cells That Target Cytomegalovirus in Glioblastoma. Cancer Research, 2018, 78, 256-264.	0.9	82
35	Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity. Journal of Controlled Release, 2018, 269, 364-373.	9.9	52
36	IMMU-31. DYSFUNCTIONAL STING PATHWAY SIGNALING COMPROMISES INNATE IMMUNITY IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi127-vi128.	1.2	1

#	Article	IF	CITATIONS
37	Recurrent Glioblastoma Treated with Recombinant Poliovirus. New England Journal of Medicine, 2018, 379, 150-161.	27.0	570
38	Immune profiling of BRCA-mutated breast cancers Journal of Clinical Oncology, 2018, 36, 585-585.	1.6	2
39	Recombinant oncolytic poliovirus combined with checkpoint blockade for breast cancer therapy Journal of Clinical Oncology, 2018, 36, e12641-e12641.	1.6	5
40	Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clinical Cancer Research, 2017, 23, 1898-1909.	7.0	215
41	Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Science Translational Medicine, 2017, 9, .	12.4	180
42	A combinatorial immunotherapy for malignant brain tumors: D2C7 immunotoxin and immune checkpoint inhibitors Journal of Clinical Oncology, 2017, 35, 102-102.	1.6	1
43	RNA Vaccination Therapy: Advances in an Emerging Field. Journal of Immunology Research, 2016, 2016, 1-2.	2.2	6
44	From the RNA world to the clinic. Science, 2016, 352, 1417-1420.	12.6	225
45	Transfecting Human Monocytes with RNA. Methods in Molecular Biology, 2016, 1428, 177-186.	0.9	2
46	Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget, 2016, 7, 79828-79841.	1.8	53
47	Increased FoxP3 and PD-L1 in non-pCR tissue from early stage HER2 positive breast cancer patients treated with trastuzumab-pertuzumab based regimens Journal of Clinical Oncology, 2016, 34, 602-602.	1.6	0
48	The RNAissance period. Discovery Medicine, 2016, 22, 67-72.	0.5	2
49	Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Journal of Controlled Release, 2015, 213, e66-e67.	9.9	2
50	Gene Expression Profile of Dendritic Cell-Tumor Cell Hybrids Determined by Microarrays and Its Implications for Cancer Immunotherapy. Journal of Immunology Research, 2015, 2015, 1-10.	2.2	1
51	RNA-Based Vaccines in Cancer Immunotherapy. Journal of Immunology Research, 2015, 2015, 1-9.	2.2	169
52	Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 2015, 519, 366-369.	27.8	429
53	Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. Journal of Neuro-Oncology, 2015, 125, 65-74.	2.9	22
54	RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit ⁺ Cardiac Progenitor Cells. Stem Cells and Development, 2015, 24, 2622-2633.	2.1	7

#	Article	IF	CITATIONS
55	Immunological targeting of cytomegalovirus for glioblastoma therapy. Oncolmmunology, 2014, 3, e29289.	4.6	23
56	Recognition and Killing of Autologous, Primary Glioblastoma Tumor Cells by Human Cytomegalovirus pp65-Specific Cytotoxic T Cells. Clinical Cancer Research, 2014, 20, 2684-2694.	7.0	74
57	Whole Blood Cells Loaded with Messenger RNA as an Antiâ€Tumor Vaccine. Advanced Healthcare Materials, 2014, 3, 837-842.	7.6	34
58	Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale, 2014, 6, 7715-7729.	5.6	63
59	High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes. Scientific Reports, 2014, 4, 4632.	3.3	7
60	Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 2014, 4, 5128.	3.3	94
61	Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. Journal of Controlled Release, 2013, 166, 227-233.	9.9	123
62	Programming Human Dendritic Cells with mRNA. Methods in Molecular Biology, 2013, 969, 111-125.	0.9	25
63	Engineering B Cells with mRNA. Methods in Molecular Biology, 2013, 969, 101-110.	0.9	3
64	Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. Journal of Clinical Investigation, 2013, 123, 3135-3145.	8.2	55
65	Immunologic Targeting of FOXP3 in Inflammatory Breast Cancer Cells. PLoS ONE, 2013, 8, e53150.	2.5	16
66	Isolation and Generation of Human Dendritic Cells. Current Protocols in Immunology, 2012, 99, Unit7.32.	3.6	100
67	Enhancement of antiâ€ŧumor immunity through local modulation of CTLAâ€4 and GITR by dendritic cells. European Journal of Immunology, 2011, 41, 3553-3563.	2.9	67
68	RNA as performance-enhancers for dendritic cells. Expert Opinion on Biological Therapy, 2010, 10, 563-574.	3.1	19
69	Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing <i>in vitro</i> antigenâ€specific Tâ€cell responses. Immunology, 2008, 125, 229-240.	4.4	38
70	Vaccination against the Forkhead Family Transcription Factor Foxp3 Enhances Tumor Immunity. Cancer Research, 2007, 67, 371-380.	0.9	140
71	Induction of Human Dendritic Cell Maturation Using Transfection with RNA Encoding a Dominant Positive Toll-Like Receptor 4. Journal of Immunology, 2004, 172, 7162-7168.	0.8	63
72	Injection of Immature Dendritic Cells into Adjuvant-Treated Skin Obviates the Need for Ex Vivo Maturation. Journal of Immunology, 2003, 171, 6275-6282.	0.8	160

#	Article	IF	CITATIONS
73	Synergy between tumor immunotherapy and antiangiogenic therapy. Blood, 2003, 102, 964-971.	1.4	162
74	Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Research, 2003, 63, 7483-9.	0.9	148
75	RNA-transfected dendritic cells. Expert Review of Vaccines, 2002, 1, 507-513.	4.4	20
76	Induction of Tumor-Specific Cytotoxic T Lymphocytes in Cancer Patients by Autologous Tumor RNA-Transfected Dendritic Cells. Annals of Surgery, 2002, 235, 540-549.	4.2	177
77	Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells Nature Medicine, 2000, 6, 1011-1017.	30.7	350
78	Induction of carcinoembryonic antigen (cea)-specific cytotoxic t-lymphocyte responsesIn vitro using autologous dendritic cells loaded with cea peptide or cea rna in patients with metastatic malignancies expressing cea. International Journal of Cancer, 1999, 82, 121-124.	5.1	151
79	Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biotechnology, 1998, 16, 364-369.	17.5	383
80	Dendritic cell/macrophage precursors capture exogenous antigen for MHC class I presentation by dendritic cells. European Journal of Immunology, 1998, 28, 1923-1933.	2.9	69
81	Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunology, Immunotherapy, 1998, 46, 82-87.	4.2	277
82	Antigen-presenting cells pulsed with unfractionated tumor-derived peptides are potent tumor vaccines. European Journal of Immunology, 1997, 27, 589-597.	2.9	86
83	Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. International Journal of Cancer, 1997, 70, 706-718.	5.1	178
84	Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. , 1997, 70, 706.		2
85	Expression of cytokine mRNA in murine splenic dendritic cells and better induction of T cell-derived cytokines by dendritic cells than by macrophages during in vitro costimulation assay using specific antigens. Journal of Leukocyte Biology, 1995, 57, 310-316.	3.3	29