## Phillip J Bergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9662078/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Colistin Methanesulfonate Is an Inactive Prodrug of Colistin against Pseudomonas aeruginosa.<br>Antimicrobial Agents and Chemotherapy, 2006, 50, 1953-1958.                                                                                                                                  | 3.2  | 325       |
| 2  | Pharmacokinetic/Pharmacodynamic Investigation of Colistin against <i>Pseudomonas aeruginosa</i> Using an <i>In Vitro</i> Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 3783-3789.                                                                                                  | 3.2  | 150       |
| 3  | Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet?. International<br>Journal of Antimicrobial Agents, 2016, 48, 592-597.                                                                                                                                       | 2.5  | 137       |
| 4  | Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Journal of Antimicrobial Chemotherapy, 2008, 61, 636-642.                                     | 3.0  | 119       |
| 5  | Antimicrobial Peptides: An Update on Classifications and Databases. International Journal of Molecular Sciences, 2021, 22, 11691.                                                                                                                                                            | 4.1  | 106       |
| 6  | A systematic review and meta-analysis of treatment outcomes following antibiotic therapy among patients with carbapenem-resistant Klebsiella pneumoniae infections. International Journal of Antimicrobial Agents, 2020, 55, 105833.                                                         | 2.5  | 81        |
| 7  | An "Unlikely―Pair: The Antimicrobial Synergy of Polymyxin B in Combination with the Cystic Fibrosis<br>Transmembrane Conductance Regulator Drugs KALYDECO and ORKAMBI. ACS Infectious Diseases, 2016,<br>2, 478-488.                                                                         | 3.8  | 80        |
| 8  | Synergistic killing of NDM-producing MDR <i>Klebsiella pneumoniae</i> by two â€~old'<br>antibiotics—polymyxin B and chloramphenicol. Journal of Antimicrobial Chemotherapy, 2015, 70,<br>2589-2597.                                                                                          | 3.0  | 73        |
| 9  | <i>In vitro</i> pharmacodynamics of fosfomycin against clinical isolates of <i>Pseudomonas<br/>aeruginosa</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 3042-3050.                                                                                                                  | 3.0  | 72        |
| 10 | Colistin and doripenem combinations against <i>Pseudomonas aeruginosa</i> : profiling the time course of synergistic killing and prevention of resistance. Journal of Antimicrobial Chemotherapy, 2015, 70, 1434-1442.                                                                       | 3.0  | 60        |
| 11 | Activity of colistin combined with doripenem at clinically relevant concentrations against<br>multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. Journal of<br>Antimicrobial Chemotherapy, 2014, 69, 2434-2442.                                                | 3.0  | 59        |
| 12 | Polymyxin Combinations: Pharmacokinetics and Pharmacodynamics for Rationale Use.<br>Pharmacotherapy, 2015, 35, 34-42.                                                                                                                                                                        | 2.6  | 52        |
| 13 | Optimizing Polymyxin Combinations Against Resistant Gram-Negative Bacteria. Infectious Diseases and Therapy, 2015, 4, 391-415.                                                                                                                                                               | 4.0  | 45        |
| 14 | Effect of different renal function on antibacterial effects of piperacillin against <i>Pseudomonas<br/>aeruginosa</i> evaluated via the hollow-fibre infection model and mechanism-based modelling.<br>Journal of Antimicrobial Chemotherapy, 2016, 71, 2509-2520.                           | 3.0  | 38        |
| 15 | Substantial Impact of Altered Pharmacokinetics in Critically III Patients on the Antibacterial Effects of Meropenem Evaluated via the Dynamic Hollow-Fiber Infection Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                               | 3.2  | 34        |
| 16 | Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of <i>Pseudomonas aeruginosa</i> , but do not suppress the emergence of fosfomycin resistance. Journal of Antimicrobial Chemotherapy, 2016, 71, 2218-2229. | 3.0  | 32        |
| 17 | Optimization of a Meropenem-Tobramycin Combination Dosage Regimen against Hypermutable and<br>Nonhypermutable Pseudomonas aeruginosa via Mechanism-Based Modeling and the Hollow-Fiber<br>Infection Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                | 3.2  | 31        |
| 18 | A polytherapy based approach to combat antimicrobial resistance using cubosomes. Nature Communications, 2022, 13, 343.                                                                                                                                                                       | 12.8 | 31        |

Phillip J Bergen

| #  | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant<br>Acinetobacter baumannii. Journal of Antibiotics, 2016, 69, 415-421.                                                                                                                      | 2.0  | 27        |
| 20 | History, Chemistry and Antibacterial Spectrum. Advances in Experimental Medicine and Biology, 2019, 1145, 15-36.                                                                                                                                                                         | 1.6  | 22        |
| 21 | Optimization and Evaluation of Piperacillin-Tobramycin Combination Dosage Regimens against<br>Pseudomonas aeruginosa for Patients with Altered Pharmacokinetics via the Hollow-Fiber Infection<br>Model and Mechanism-Based Modeling. Antimicrobial Agents and Chemotherapy, 2018, 62, . | 3.2  | 21        |
| 22 | Elucidation of the pharmacokinetic/pharmacodynamic determinants of fosfomycin activity against<br>Pseudomonas aeruginosa using a dynamic in vitro model. Journal of Antimicrobial Chemotherapy,<br>2018, 73, 1570-1578.                                                                  | 3.0  | 21        |
| 23 | Rational Combinations of Polymyxins with Other Antibiotics. Advances in Experimental Medicine and Biology, 2019, 1145, 251-288.                                                                                                                                                          | 1.6  | 21        |
| 24 | Meropenem-Tobramycin Combination Regimens Combat Carbapenem-Resistant Pseudomonas aeruginosa<br>in the Hollow-Fiber Infection Model Simulating Augmented Renal Clearance in Critically III Patients.<br>Antimicrobial Agents and Chemotherapy, 2019, 64, .                               | 3.2  | 21        |
| 25 | Evaluation of Meropenem iprofloxacin Combination Dosage Regimens for the Pharmacokinetics of<br>Critically III Patients With Augmented Renal Clearance. Clinical Pharmacology and Therapeutics, 2021,<br>109, 1104-1115.                                                                 | 4.7  | 16        |
| 26 | Enhanced bacterial killing with colistin/sulbactam combination against carbapenem-resistant<br>Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2021, 57, 106271.                                                                                                 | 2.5  | 15        |
| 27 | Safe disposal of prescribed medicines. Australian Prescriber, 2015, 38, 90-92.                                                                                                                                                                                                           | 1.0  | 14        |
| 28 | Synergistic Killing of Polymyxin B in Combination With the Antineoplastic Drug Mitotane Against<br>Polymyxin-Susceptible and -Resistant Acinetobacter baumannii: A Metabolomic Study. Frontiers in<br>Pharmacology, 2018, 9, 359.                                                        | 3.5  | 14        |
| 29 | Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi<br>Metallo-β-Lactamase-Producing <i>Klebsiella pneumoniae</i> Is Predominately Driven by<br>Chloramphenicol. ACS Infectious Diseases, 2021, 7, 1584-1595.                                                         | 3.8  | 14        |
| 30 | Polymyxin Triple Combinations against Polymyxin-Resistant, Multidrug-Resistant, KPC-Producing<br>Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2020, 64, .                                                                                                               | 3.2  | 13        |
| 31 | Pharmacokinetics and pharmacodynamics of peptide antibiotics. Advanced Drug Delivery Reviews, 2022, 183, 114171.                                                                                                                                                                         | 13.7 | 13        |
| 32 | Performance of Four Fosfomycin Susceptibility Testing Methods against an International Collection of Clinical Pseudomonas aeruginosa Isolates. Journal of Clinical Microbiology, 2020, 58, .                                                                                             | 3.9  | 12        |
| 33 | Synergistic Meropenem-Tobramycin Combination Dosage Regimens against Clinical Hypermutable<br>Pseudomonas aeruginosa at Simulated Epithelial Lining Fluid Concentrations in a Dynamic Biofilm<br>Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .                               | 3.2  | 11        |
| 34 | Strategies to simplify complex medication regimens. Australian Journal of General Practice, 2021, 50, 43-48.                                                                                                                                                                             | 0.8  | 11        |
| 35 | Transcriptomic responses of a New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae isolate<br>to the combination of polymyxin B and chloramphenicol. International Journal of Antimicrobial<br>Agents, 2020, 56, 106061.                                                        | 2.5  | 10        |
| 36 | Metabolic Perturbations Caused by the Over-Expression of mcr-1 in Escherichia coli. Frontiers in Microbiology, 2020, 11, 588658.                                                                                                                                                         | 3.5  | 7         |

Phillip J Bergen

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Clinically Relevant Epithelial Lining Fluid Concentrations of Meropenem with Ciprofloxacin Provide<br>Synergistic Killing and Resistance Suppression of Hypermutable Pseudomonas aeruginosa in a Dynamic<br>Biofilm Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .                  | 3.2 | 7         |
| 38 | Clinically Relevant Concentrations of Polymyxin B and Meropenem Synergistically Kill<br>Multidrug-Resistant Pseudomonas aeruginosa and Minimize Biofilm Formation. Antibiotics, 2021, 10,<br>405.                                                                                              | 3.7 | 7         |
| 39 | Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable<br>Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in<br>vitro infection model. Journal of Global Antimicrobial Resistance, 2021, 26, 55-63. | 2.2 | 7         |
| 40 | Pharmacokinetic/Pharmacodynamic Based Breakpoints of Polymyxin B for Bloodstream Infections<br>Caused by Multidrug-Resistant Gram-Negative Pathogens. Frontiers in Pharmacology, 2021, 12, 785893.                                                                                             | 3.5 | 7         |
| 41 | Differences in Fosfomycin Resistance Mechanisms between Pseudomonas aeruginosa and<br><i>Enterobacterales</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0144621.                                                                                                                   | 3.2 | 5         |
| 42 | Differences in suppression of regrowth and resistance despite similar initial bacterial killing for<br>meropenem and piperacillin/tazobactam against Pseudomonas aeruginosa and Escherichia coli.<br>Diagnostic Microbiology and Infectious Disease, 2018, 91, 69-76.                          | 1.8 | 4         |
| 43 | Evaluation of intravenous to oral antimicrobial switch at a hospital with a tightly regulated<br>antimicrobial stewardship program. British Journal of Clinical Pharmacology, 2021, 87, 3354-3358.                                                                                             | 2.4 | 4         |
| 44 | Exploring the practice, confidence and educational needs of hospital pharmacists in reviewing antimicrobial prescribing: a cross-sectional, nationwide survey. BMC Medical Education, 2021, 21, 235.                                                                                           | 2.4 | 4         |
| 45 | ColistinDose, a Mobile App for Determining Intravenous Dosage Regimens of Colistimethate in<br>Critically III Adult Patients: Clinician-Centered Design and Development Study. JMIR MHealth and<br>UHealth, 2020, 8, e20525.                                                                   | 3.7 | 4         |
| 46 | Simulated Intravenous versus Inhaled Tobramycin with or without Intravenous Ceftazidime Evaluated<br>against Hypermutable Pseudomonas aeruginosa via a Dynamic Biofilm Model and Mechanism-Based<br>Modeling. Antimicrobial Agents and Chemotherapy, 2022, 66, aac0220321.                     | 3.2 | 4         |
| 47 | Effect of Different Piperacillin-Tazobactam Dosage Regimens on Synergy of the Combination with<br>Tobramycin against Pseudomonas aeruginosa for the Pharmacokinetics of Critically III Patients in a<br>Dynamic Infection Model. Antibiotics, 2022, 11, 101.                                   | 3.7 | 4         |
| 48 | Mortality, clinical and microbiological response following antibiotic therapy among patients with<br>carbapenem-resistant Klebsiella pneumoniae infections (a meta-analysis dataset). Data in Brief, 2020, 28,<br>104907.                                                                      | 1.0 | 2         |
| 49 | Polymyxin causes cell envelope remodelling and stress responses in mcr-1-harbouring Escherichia coli. International Journal of Antimicrobial Agents, 2022, 59, 106505.                                                                                                                         | 2.5 | 1         |
| 50 | The afterâ€life of drugs: a responsible care initiative for reducing their environmental impact. Medical<br>Journal of Australia, 2014, 200, 83-83.                                                                                                                                            | 1.7 | 0         |
| 51 | Coaching ward pharmacists in antimicrobial stewardship: A pilot study. Exploratory Research in Clinical and Social Pharmacy, 2022, 5, 100131.                                                                                                                                                  | 1.0 | 0         |