Xueqin Ran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9661933/publications.pdf Version: 2024-02-01

Χήροιν Ράν

#	Article	IF	CITATIONS
1	Computational studies on nitrogen (N)-substituted 2,6-diphenylanthracene: a novel precursor of organic field effect transistor materials. New Journal of Chemistry, 2022, 46, 1135-1143.	2.8	3
2	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	39.5	342
3	A bromide-induced highly oriented low-dimensional Ruddlesden–Popper phase for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15068-15075.	10.3	5
4	Manipulating SnO ₂ Growth for Efficient Electron Transport in Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100128.	3.7	33
5	Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371, 1359-1364.	12.6	508
6	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	3.1	16
7	Efficient and stable Ruddlesden-Popper layered tin-based perovskite solar cells enabled by ionic liquid-bulky spacers. Science China Chemistry, 2021, 64, 1577-1585.	8.2	26
8	Valence Regulation of Ultrathin Cerium Vanadate Nanosheets for Enhanced Photocatalytic CO2 Reduction to CO. Catalysts, 2021, 11, 1115.	3.5	11
9	Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress. Journal of Energy Chemistry, 2021, 61, 395-415.	12.9	34
10	In situ nanocrystal seeding perovskite crystallization towardÂhigh-performance solar cells. Materials Today Energy, 2021, 22, 100855.	4.7	9
11	Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. Journal of Applied Physics, 2020, 128, 085501.	2.5	5
12	Allâ€inorganic Snâ€based Perovskite Solar Cells: Status, Challenges, and Perspectives. ChemSusChem, 2020, 13, 6477-6497.	6.8	35
13	Tailoring Component Interaction for Airâ€Processed Efficient and Stable Allâ€Inorganic Perovskite Photovoltaic. Angewandte Chemie, 2020, 132, 13456-13463.	2.0	15
14	<i>In Situ</i> Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Letters, 2020, 20, 5799-5806.	9.1	67
15	Tailoring Component Interaction for Airâ€Processed Efficient and Stable Allâ€Inorganic Perovskite Photovoltaic. Angewandte Chemie - International Edition, 2020, 59, 13354-13361.	13.8	158
16	In situ observation of δ phase suppression by lattice strain in all-inorganic perovskite solar cells. Nano Energy, 2020, 73, 104803.	16.0	32
17	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	5.5	72
18	Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. Journal of Materials Chemistry A, 2019, 7, 13860-13872.	10.3	84

Xueqin Ran

#	Article	IF	CITATIONS
19	Efficient and Stable Low-Dimensional Ruddlesden–Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier. Journal of Physical Chemistry Letters, 2019, 10, 1173-1179.	4.6	47
20	How Valinomycin Ionophores Enter and Transport K ⁺ across Model Lipid Bilayer Membranes. Langmuir, 2019, 35, 16935-16943.	3.5	33
21	Self-electrochemiluminescence of poly[9,9-bis(3â€~-(N,N- dimethyl amino)propyl)-2,7-fluorene]-alt- 2,7-(9,9-) Tj ET Acta, 2019, 297, 826-832.	Qq1 1 0.7 5.2	84314 rg8 15
22	A new BODIPY-derived ratiometric senor with internal charge transfer (ICT) effect: colorimetric/fluorometric sensing of Ag ⁺ . Dalton Transactions, 2018, 47, 2285-2291.	3.3	21
23	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 335-339.	4.6	72
24	Fluorination Triggered New Small Molecule Donor Materials for Efficient As ast Organic Solar Cells. Small, 2018, 14, e1801542.	10.0	22
25	Structural, Electronic and Optical Properties of Multifunctional Iridium(III) and Platinum(II) Metallophosphors for Organic Lightâ€Emitting Diodes. Chinese Journal of Chemistry, 2012, 30, 2431-2439. 	4.9	1
26	Starâ€shaped Organic Molecules That Comprise a 1,3,5â€Trisubstituted Benzene Core and Three Oligoaryleneethynylene Arms as Lightâ€emitting Materials. Chinese Journal of Chemistry, 2010, 28,	4.9	0

199-207.