Xueqin Ran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9661933/publications.pdf Version: 2024-02-01

IFOIN R

#	Article	IF	CITATIONS
1	Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 2021, 371, 1359-1364.	12.6	508
2	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	39.5	342
3	Tailoring Component Interaction for Airâ€Processed Efficient and Stable Allâ€Inorganic Perovskite Photovoltaic. Angewandte Chemie - International Edition, 2020, 59, 13354-13361.	13.8	158
4	Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application. Journal of Materials Chemistry A, 2019, 7, 13860-13872.	10.3	84
5	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 335-339.	4.6	72
6	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	5.5	72
7	<i>In Situ</i> Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Letters, 2020, 20, 5799-5806.	9.1	67
8	Efficient and Stable Low-Dimensional Ruddlesden–Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier. Journal of Physical Chemistry Letters, 2019, 10, 1173-1179.	4.6	47
9	Allâ€inorganic Snâ€based Perovskite Solar Cells: Status, Challenges, and Perspectives. ChemSusChem, 2020, 13, 6477-6497.	6.8	35
10	Stability of mixed-halide wide bandgap perovskite solar cells: Strategies and progress. Journal of Energy Chemistry, 2021, 61, 395-415.	12.9	34
11	How Valinomycin Ionophores Enter and Transport K ⁺ across Model Lipid Bilayer Membranes. Langmuir, 2019, 35, 16935-16943.	3.5	33
12	Manipulating SnO ₂ Growth for Efficient Electron Transport in Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100128.	3.7	33
13	In situ observation of δphase suppression by lattice strain in all-inorganic perovskite solar cells. Nano Energy, 2020, 73, 104803.	16.0	32
14	Efficient and stable Ruddlesden-Popper layered tin-based perovskite solar cells enabled by ionic liquid-bulky spacers. Science China Chemistry, 2021, 64, 1577-1585.	8.2	26
15	Fluorination Triggered New Small Molecule Donor Materials for Efficient Asâ€Cast Organic Solar Cells. Small, 2018, 14, e1801542.	10.0	22
16	A new BODIPY-derived ratiometric senor with internal charge transfer (ICT) effect: colorimetric/fluorometric sensing of Ag ⁺ . Dalton Transactions, 2018, 47, 2285-2291.	3.3	21
17	Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6555-6563.	3.1	16
18	Self-electrochemiluminescence of poly[9,9-bis(3â€~-(N,N- dimethyl amino)propyl)-2,7-fluorene]-alt- 2,7-(9,9-) Tj E	ETQq0 0 0 5.2	rgBT /Overloo 15

18

2

Acta, 2019, 297, 826-832.

Xueqin Ran

#	Article	IF	CITATIONS
19	Tailoring Component Interaction for Airâ€Processed Efficient and Stable Allâ€Inorganic Perovskite Photovoltaic. Angewandte Chemie, 2020, 132, 13456-13463.	2.0	15
20	Valence Regulation of Ultrathin Cerium Vanadate Nanosheets for Enhanced Photocatalytic CO2 Reduction to CO. Catalysts, 2021, 11, 1115.	3.5	11
21	In situ nanocrystal seeding perovskite crystallization towardÂhigh-performance solar cells. Materials Today Energy, 2021, 22, 100855.	4.7	9
22	Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. Journal of Applied Physics, 2020, 128, 085501.	2.5	5
23	A bromide-induced highly oriented low-dimensional Ruddlesden–Popper phase for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15068-15075.	10.3	5
24	Computational studies on nitrogen (N)-substituted 2,6-diphenylanthracene: a novel precursor of organic field effect transistor materials. New Journal of Chemistry, 2022, 46, 1135-1143.	2.8	3
25	Structural, Electronic and Optical Properties of Multifunctional Iridium(III) and Platinum(II) Metallophosphors for Organic Lightâ€Emitting Diodes. Chinese Journal of Chemistry, 2012, 30, 2431-2439.	4.9	1
26	Starâ€shaped Organic Molecules That Comprise a 1,3,5â€Trisubstituted Benzene Core and Three Oligoaryleneethynylene Arms as Lightâ€emitting Materials. Chinese Journal of Chemistry, 2010, 28,	4.9	0

26 Oligoaryleneetnynylene Arms as Lighta€emitting Materials. Chinese Journal of Chemistry, 20 199-207.