
## Akemi Kosaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9661005/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor<br>immunotherapy for head and neck squamous cell carcinoma. Oncolmmunology, 2022, 11, 2021619.                                                       | 4.6 | 19        |
| 2  | A tumor metastasisâ€associated molecule <scp>TWIST1</scp> is a favorable target for cancer immunotherapy due to its immunogenicity. Cancer Science, 2022, 113, 2526-2535.                                                                 | 3.9 | 4         |
| 3  | A critical role of STING-triggered tumor-migrating neutrophils for anti-tumor effect of intratumoral cGAMP treatment. Cancer Immunology, Immunotherapy, 2021, 70, 2301-2312.                                                              | 4.2 | 11        |
| 4  | Interruption of MDM2 signaling augments MDM2-targeted T cell-based antitumor immunotherapy<br>through antigen-presenting machinery. Cancer Immunology, Immunotherapy, 2021, 70, 3421-3434.                                                | 4.2 | 11        |
| 5  | IFN-γ- and IL-17-producing CD8 <sup>+</sup> T (Tc17-1) cells in combination with poly-ICLC and peptide vaccine exhibit antiglioma activity. , 2021, 9, e002426.                                                                           |     | 8         |
| 6  | A stealth antigen SPESP1, which is epigenetically silenced in tumors, is a suitable target for cancer immunotherapy. Cancer Science, 2021, 112, 2705-2713.                                                                                | 3.9 | 6         |
| 7  | CD47 blockade enhances the efficacy of intratumoral STING-targeting therapy by activating phagocytes. Journal of Experimental Medicine, 2021, 218, .                                                                                      | 8.5 | 27        |
| 8  | Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. OncoImmunology, 2021, 10, 1856545.                                                         | 4.6 | 13        |
| 9  | Intratumoral STING activations overcome negative impact of cisplatin on antitumor immunity by<br>inflaming tumor microenvironment in squamous cell carcinoma. Biochemical and Biophysical<br>Research Communications, 2020, 522, 408-414. | 2.1 | 19        |
| 10 | Phosphorylated vimentin as an immunotherapeutic target against metastatic colorectal cancer.<br>Cancer Immunology, Immunotherapy, 2020, 69, 989-999.                                                                                      | 4.2 | 15        |
| 11 | PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer<br>immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. Journal of Translational<br>Medicine, 2019, 17, 207.               | 4.4 | 13        |
| 12 | Effects of STING stimulation on macrophages: STING agonists polarize into "classically―or<br>"alternatively―activated macrophages?. Human Vaccines and Immunotherapeutics, 2018, 14, 285-287.                                             | 3.3 | 29        |
| 13 | Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1466771.                                                                                | 4.6 | 14        |
| 14 | Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunology, Immunotherapy, 2017, 66, 705-716.                                                       | 4.2 | 128       |
| 15 | Intratumoral injection of IFN-β induces chemokine production in melanoma and augments the therapeutic efficacy of anti-PD-L1 mAb. Biochemical and Biophysical Research Communications, 2017, 490, 521-527.                                | 2.1 | 15        |
| 16 | Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell<br>lymphoma: a potential rationale for immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66,<br>877-890.                          | 4.2 | 126       |
| 17 | Epigenetic modification augments the immunogenicity of human leukocyte antigen G serving as a tumor antigen for T cell-based immunotherapy. Oncolmmunology, 2016, 5, e1169356.                                                            | 4.6 | 34        |
| 18 | Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity.<br>Biochemical and Biophysical Research Communications, 2015, 458, 549-554.                                                            | 2.1 | 26        |

Ακέμι Κοσάκα

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Protective role of STINC against gliomagenesis: Rational use of STING agonist in anti-glioma<br>immunotherapy. Oncolmmunology, 2015, 4, e999523.                                 | 4.6 | 16        |
| 20 | STING Contributes to Antiglioma Immunity via Triggering Type I IFN Signals in the Tumor<br>Microenvironment. Cancer Immunology Research, 2014, 2, 1199-1208.                     | 3.4 | 185       |
| 21 | Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human CBM xenografts. , 2013, 1, 21. |     | 85        |