Keietsu Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9657106/publications.pdf

Version: 2024-02-01

430874 330143 2,526 37 18 37 h-index citations g-index papers 37 37 37 2460 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438, 1157-1161.	27.8	1,128
2	Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Applied Microbiology and Biotechnology, 2005, 67, 778-788.	3.6	195
3	MpkA-Dependent and -Independent Cell Wall Integrity Signaling in Aspergillus nidulans. Eukaryotic Cell, 2007, 6, 1497-1510.	3.4	157
4	Dynamics of cell wall components of <i>Magnaporthe grisea</i> during infectious structure development. Molecular Microbiology, 2009, 73, 553-570.	2.5	135
5	A defect of LigD (human Lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genetics and Biology, 2008, 45, 878-889.	2.1	132
6	Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia, 2006, 162, 143-153.	3.1	107
7	Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus. PLoS ONE, 2013, 8, e54893.	2.5	95
8	Cell wall structure and biogenesis in <i>Aspergillus</i> species. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1700-1711.	1.3	84
9	The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Molecular Microbiology, 2005, 57, 1780-1796.	2.5	71
10	NikA/TcsC Histidine Kinase Is Involved in Conidiation, Hyphal Morphology, and Responses to Osmotic Stress and Antifungal Chemicals in Aspergillus fumigatus. PLoS ONE, 2013, 8, e80881.	2.5	67
11	Increased enzyme production under liquid culture conditions in the industrial fungus <i>Aspergillus oryzae</i> by disruption of the genes encoding cell wall $\hat{l}\pm -1,3$ -glucan synthase. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1853-1863.	1.3	42
12	Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2017, 124, 47-53.	2.2	30
13	Both Galactosaminogalactan and $\hat{l}\pm 1,3$ -Glucan Contribute to Aggregation of Aspergillus oryzae Hyphae in Liquid Culture. Frontiers in Microbiology, 2019, 10, 2090.	3.5	27
14	The mechanisms of hyphal pellet formation mediated by polysaccharides, \hat{l} ±-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biology and Biotechnology, 2020, 7, 10.	5.1	26
15	Molecular Mass and Localization of î±-1,3-Glucan in Cell Wall Control the Degree of Hyphal Aggregation in Liquid Culture of Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 2623.	3. 5	24
16	Cell wall structure of secreted laccase-silenced strain in Lentinula edodes. Fungal Biology, 2018, 122, 1192-1200.	2.5	22
17	A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins. PLoS ONE, 2014, 9, e112874.	2.5	22
18	Mitogen-activated protein kinases MpkA and MpkB independently affect micafungin sensitivity in <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 836-844.	1.3	20

#	Article	IF	CITATIONS
19	lonic interaction of positive amino acid residues of fungal hydrophobin <scp>RolA</scp> with acidic amino acid residues of cutinase <scp>CutL1</scp> . Molecular Microbiology, 2015, 96, 14-27.	2.5	16
20	High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes. Journal of Bioscience and Bioengineering, 2021, 131, 622-630.	2.2	14
21	<i>Escherichia coli yjjPB</i> genes encode a succinate transporter important for succinate production. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1837-1844.	1.3	11
22	Novel Antifungal Compound Z-705 Specifically Inhibits Protein Kinase C of Filamentous Fungi. Applied and Environmental Microbiology, 2019, 85, .	3.1	11
23	Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production. Journal of Bioscience and Bioengineering, 2019, 127, 465-471.	2.2	10
24	Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system. Applied Microbiology and Biotechnology, 2017, 101, 2343-2356.	3.6	9
25	Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes. Journal of Biological Chemistry, 2011, 286, 29044-29052.	3.4	8
26	Development of an efficient soymilk cream production method by papain digestion, heat treatment, and low-speed centrifugation. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1890-1892.	1.3	8
27	Improved recombinant protein production in Aspergillus oryzae lacking both $\hat{l}\pm 1,3$ -glucan and galactosaminogalactan in batch culture with a lab-scale bioreactor. Journal of Bioscience and Bioengineering, 2021, , .	2.2	8
28	Quantitative Monitoring of Mycelial Growth of Aspergillus fumigatus in Liquid Culture by Optical Density. Microbiology Spectrum, 2022, 10, e0006321.	3.0	8
29	Cell Wall Integrity and Its Industrial Applications in Filamentous Fungi. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	-314 rgBT	/Oyerlock 10
30	Involvement of hydrophobic amino acid residues in C7–C8 loop of <i>Aspergillus oryzae</i> hydrophobin RolA in hydrophobic interaction between RolA and a polyester. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1693-1699.	1.3	6
31	Asp30 of <i>Aspergillus oryzae</i> cutinase CutL1 is involved in the ionic interaction with fungal hydrophobin RolA. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1363-1368.	1.3	6
32	Identification of EayjjPB encoding a dicarboxylate transporter important for succinate production under aerobic and anaerobic conditions in Enterobacter aerogenes. Journal of Bioscience and Bioengineering, 2018, 125, 505-512.	2,2	5
33	R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport. Bioscience, Biotechnology and Biochemistry, 2016, 80, 744-747.	1.3	3
34	Analysis of the self-assembly process of <i>Aspergillus oryzae</i> hydrophobin RolA by Langmuir–Blodgett method. Bioscience, Biotechnology and Biochemistry, 2020, 84, 678-685.	1.3	3
35	A Glycosylphosphatidylinositol-Anchored α-Amylase Encoded by amyD Contributes to a Decrease in the Molecular Mass of Cell Wall α-1,3-Glucan in Aspergillus nidulans. Frontiers in Fungal Biology, 2022, 2, .	2.0	3
36	Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces. Applied and Environmental Microbiology, 2022, 88, AEM0208721.	3.1	3

#	Article	lF	CITATIONS
37	Downregulation of the ypdA Gene Encoding an Intermediate of His-Asp Phosphorelay Signaling in Aspergillus nidulans Induces the Same Cellular Effects as the Phenylpyrrole Fungicide Fludioxonil. Frontiers in Fungal Biology, 2021, 2, .	2.0	2