Jingcong He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/965668/publications.pdf

Version: 2024-02-01

94433 138484 4,256 335 37 58 h-index citations g-index papers 336 336 336 1062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Gain Wide-Band Gyrotron Traveling Wave Amplifier with a Helically Corrugated Waveguide. Physical Review Letters, 2000, 84, 2746-2749.	7.8	225
2	Gyrotron Traveling Wave Amplifier with a Helical Interaction Waveguide. Physical Review Letters, 1998, 81, 5680-5683.	7.8	217
3	High Power Wideband Gyrotron Backward Wave Oscillator Operating towards the Terahertz Region. Physical Review Letters, 2013, 110, 165101.	7.8	146
4	A cusp electron gun for millimeter wave gyrodevices. Applied Physics Letters, 2010, 96, .	3.3	120
5	Multi-Mode Coupling Wave Theory for Helically Corrugated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1-7.	4.6	109
6	Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun. Applied Physics Letters, 2007, 90, 253501.	3.3	101
7	Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region. Physical Review Letters, 2017, 119, 184801.	7.8	100
8	Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam. Applied Physics Letters, 2015, 107, .	3.3	96
9	Gyro-BWO Experiments Using a Helical Interaction Waveguide. IEEE Transactions on Electron Devices, 2005, 52, 839-844.	3.0	90
10	Generation and application of pseudospark-sourced electron beams. Journal Physics D: Applied Physics, 2007, 40, 1953-1956.	2.8	87
11	Axis-encircling electron beam generation using a smooth magnetic cusp for gyrodevices. Applied Physics Letters, 2008, 93, .	3.3	86
12	Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide. Applied Physics Letters, 2006, 89, 091504.	3.3	84
13	Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study. Physical Review E, 2004, 70, 046402.	2.1	78
14	Millimeter wave generation from a pseudospark-sourced electron beam. Physics of Plasmas, 2009, 16, .	1.9	77
15	Compression of Frequency-Modulated Pulses using Helically Corrugated Waveguides and Its Potential for Generating Multigigawatt rf Radiation. Physical Review Letters, 2004, 92, 118301.	7.8	76
16	Simulation and Experiments of a <inline-formula> <tex-math notation="LaTeX">\$W\$ </tex-math></inline-formula> -Band Extended Interaction Oscillator Based on a Pseudospark-Sourced Electron Beam. IEEE Transactions on Electron Devices, 2016, 63, 512-516.	3.0	72
17	Design and Numerical Optimization of a Cusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices. IEEE Transactions on Plasma Science, 2009, 37, 2153-2157.	1.3	71
18	Single-gap pseudospark discharge experiments. Journal of Applied Physics, 2001, 90, 3212-3218.	2.5	67

#	Article	IF	CITATIONS
19	A W-Band Multi-Layer Microwave Window for Pulsed Operation of Gyro-Devices. IEEE Microwave and Wireless Components Letters, 2013, 23, 237-239.	3.2	63
20	Demonstration of a Planar $\{W\}$ -Band, kW-Level Extended Interaction Oscillator Based on a Pseudospark-Sourced Sheet Electron Beam. IEEE Electron Device Letters, 2018, 39, 432-435.	3.9	63
21	Design and Measurement of a Broadband Sidewall Coupler for a W-Band Gyro-TWA. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3183-3190.	4.6	61
22	Wide-Band ${hbox{HE}}_{11}$ Mode Terahertz Wave Windows for Gyro-Amplifiers. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 108-112.	3.1	60
23	A high directivity broadband corrugated horn for W-band gyro-devices. IEEE Transactions on Antennas and Propagation, 2013, 61, 1453-1456.	5.1	59
24	Propagation and post-acceleration of a pseudospark-sourced electron beam. Journal of Applied Physics, 2002, 91, 5419-5422.	2.5	55
25	Pseudospark Experiments: Cherenkov Interaction and Electron Beam Post-Acceleration. IEEE Transactions on Plasma Science, 2004, 32, 233-239.	1.3	52
26	Pseudospark-based electron beam and Cherenkov maser experiments. Physics of Plasmas, 2000, 7, 5195-5205.	1.9	50
27	A novel tunable frequency selective surface absorber with dual-DOF for broadband applications. Optics Express, 2014, 22, 30217.	3.4	47
28	Preliminary design and optimization of a G-band extended interaction oscillator based on a pseudospark-sourced electron beam. Physics of Plasmas, 2015, 22, .	1.9	47
29	Study of a 0.2-THz Extended Interaction Oscillator Driven by a Pseudospark-Sourced Sheet Electron Beam. IEEE Transactions on Electron Devices, 2016, 63, 4955-4960.	3.0	47
30	Optimization and Measurement of a Smoothly Profiled Horn for a W-Band Gyro-TWA. IEEE Transactions on Electron Devices, 2017, 64, 2665-2669.	3.0	45
31	Experimental Operation of a Cyclotron Autoresonance Maser Oscillator at the Second Harmonic. Physical Review Letters, 1996, 77, 4836-4839.	7.8	44
32	Microwave pulse compression using a helically corrugated waveguide. IEEE Transactions on Plasma Science, 2005, 33, 661-667.	1.3	41
33	High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications. Sensors, 2020, 20, 115.	3.8	41
34	High-current oversized annular electron beam formation for high-power microwave research. Applied Physics Letters, 2006, 89, 171503.	3.3	40
35	Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor. Physics of Plasmas, 2010, 17, .	1.9	39
36	Experimental demonstration of a terahertz extended interaction oscillator driven by a pseudospark-sourced sheet electron beam. Applied Physics Letters, 2018, 112, .	3.3	39

#	Article	IF	CITATIONS
37	Design Study of a Fundamental Mode Input Coupler for a 372-GHz Gyro-TWA I: Rectangular-to-Circular Coupling Methods. IEEE Transactions on Electron Devices, 2016, 63, 497-503.	3.0	37
38	Design of an Energy Recovery System for a Gyrotron Backward-Wave Oscillator. IEEE Transactions on Plasma Science, 2009, 37, 390-394.	1.3	36
39	Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation. Physics of Plasmas, 2008, 15, 056503.	1.9	32
40	Experimental Study of Microwave Pulse Compression Using a Five-Fold Helically Corrugated Waveguide. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1090-1096.	4.6	31
41	Design of a Dual-Band Electromagnetic Absorber With Frequency Selective Surfaces. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 841-845.	4.0	30
42	Design and measurement of a polarization convertor based on a truncated circular waveguide. Journal Physics D: Applied Physics, 2012, 45, 345103.	2.8	29
43	Numerical Optimization of a Multistage Depressed Collector With Secondary Electron Emission for an X-band Gyro-BWO. IEEE Transactions on Plasma Science, 2009, 37, 2328-2334.	1.3	28
44	Influence of the electrode gap separation on the pseudospark-sourced electron beam generation. Physics of Plasmas, 2016, 23, .	1.9	28
45	A Pillbox Window With Impedance Matching Sections for a -Band Gyro-TWA. IEEE Electron Device Letters, 2018, 39, 1081-1084.	3.9	28
46	Extremely Sensitive Microwave Sensor for Evaluation of Dielectric Characteristics of Low-Permittivity Materials. Sensors, 2020, 20, 1916.	3.8	28
47	Ultra-Thin Metasheet for Dual-Wide-Band Linear to Circular Polarization Conversion With Wide-Angle Performance. IEEE Access, 2020, 8, 163244-163254.	4.2	27
48	A pseudospark cathode Cherenkov maser: theory and experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 407, 175-180.	1.6	26
49	Design and simulation of a â^¼390 GHz seventh harmonic gyrotron using a large orbit electron beam. Journal Physics D: Applied Physics, 2010, 43, 155204.	2.8	26
50	Study of a 0.35 THz Extended Interaction Oscillator Driven by a Pseudospark-Sourced Sheet Electron Beam. IEEE Transactions on Electron Devices, 2020, 67, 652-658.	3.0	26
51	Triple-wide-band Ultra-thin Metasheet for transmission polarization conversion. Scientific Reports, 2020, 10, 8810.	3.3	25
52	X-ray emission as a diagnostic from pseudospark-sourced electron beams. Nuclear Instruments & Methods in Physics Research B, 2014, 335, 74-77.	1.4	24
53	Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 846-856.	2.2	24
54	An Output Coupler for a W-Band High Power Wideband Gyroamplifier. IEEE Transactions on Electron Devices, 2017, 64, 1763-1766.	3.0	24

#	Article	IF	CITATIONS
55	Dual-Band Ultrathin Meta-Array for Polarization Conversion in <i>Ku</i> / <i>Ka</i> -Band With Broadband Transmission. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 856-860.	4.0	24
56	Design, Fabrication, and Cold Test of a High Frequency System for an <i>H</i> -Band Sheet Beam Travelling Wave Tube. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 292-301.	3.1	24
57	Explosive cathode gyrotron experiments. IEEE Transactions on Plasma Science, 1998, 26, 375-382.	1.3	23
58	Advanced post-acceleration methodology for pseudospark-sourced electron beam. Physics of Plasmas, 2017, 24, .	1.9	22
59	Amplification of Frequency-Swept Signals in a -Band Gyrotron Travelling Wave Amplifier. IEEE Electron Device Letters, 2018, 39, 1077-1080.	3.9	21
60	Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for WLAN/ISM/WiMAX/UWB and other Wireless Communication Applications. Sensors, 2020, 20, 1735.	3.8	21
61	Wideband Gyro-Amplifiers. IEEE Transactions on Plasma Science, 2012, 40, 1303-1310.	1.3	20
62	Design and Measurement of a W-Band Brewster Window. IEEE Microwave and Wireless Components Letters, 2015, 25, 826-828.	3.2	20
63	Ultralow Scattering and Broadband Metasurface Using Phase Adjustable FSS Elements Embedded With Lumped Resistors. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 793-797.	4.0	20
64	Study of a fast, high-impedance, high-voltage pulse divider. Review of Scientific Instruments, 2001, 72, 4266-4269.	1.3	19
65	Numerical investigation of auroral cyclotron maser processes. Physics of Plasmas, 2010, 17, 056501.	1.9	19
66	Visualization of a Pseudospark-Sourced Electron Beam. IEEE Transactions on Plasma Science, 2014, 42, 2826-2827.	1.3	19
67	Experiments on W-band extended interaction oscillator with pseudospark sourced post-accelerated electron beam. Physics of Plasmas, 2017, 24, .	1.9	19
68	Design Study of a 372-GHz Higher Order Mode Input Coupler. IEEE Transactions on Electron Devices, 2016, , 1-7.	3.0	18
69	Design and Millimeter-Wave Measurement of a Wideband Power Coupling Structure for Sheet Electron Beam Devices. IEEE Transactions on Electron Devices, 2019, 66, 3171-3177.	3.0	18
70	Study of <i>H</i> -Band High-Order Overmoded Power Couplers for Sheet Electron Beam Devices. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2251-2258.	4.6	18
71	Design and Measurement of an <i>H</i> -Band Rectangular TE ₁₀ to TE ₂₀ Mode Converter. IEEE Access, 2020, 8, 37242-37249.	4.2	18
72	Optimization of a triode-type cusp electron gun for a W-band gyro-TWA. Physics of Plasmas, 2018, 25, .	1.9	16

#	Article	IF	Citations
73	Microstrip system on-chip circular polarized (CP) slotted antenna for THz communication application. Journal of Electromagnetic Waves and Applications, 2020, 34, 1029-1038.	1.6	16
74	CNC Machined Helically Corrugated Interaction Region for a THz Gyrotron Traveling Wave Amplifier. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 85-89.	3.1	15
75	Production of Powerful Spatially Coherent Radiation in Planar and Coaxial FEM Exploiting Two-Dimensional Distributed Feedback. IEEE Transactions on Plasma Science, 2009, 37, 1792-1800.	1.3	14
76	Numerical Simulation of a Gyro-BWO with a Helically Corrugated Interaction Region, Cusp Electron Gun and Depressed Collector. , 2011 , , .		14
77	Study of the beam profile and position instability of a post-accelerated pseudospark-sourced electron beam. Physics of Plasmas, 2017, 24, .	1.9	14
78	A Millimeter-Wave Klystron Upconverter With a Higher Order Mode Output Cavity. IEEE Transactions on Electron Devices, 2017, 64, 3857-3862.	3.0	14
79	Design and Measurement of a Terahertz Double Staggered Grating Waveguide With an Arc-Shaped Beam Tunnel. IEEE Transactions on Electron Devices, 2019, 66, 4932-4937.	3.0	14
80	Novel Coupling Cavities for Improving the Performance of $\langle i \rangle G \langle i \rangle$ -Band Ladder-Type Multigap Extended Interaction Klystrons. IEEE Transactions on Plasma Science, 2020, 48, 1350-1356.	1.3	14
81	Triband Ultrathin Polarization Converter for <i>X</i>	3.2	14
82	Free-electron maser based on a cavity with two- and one-dimensional distributed feedback. Applied Physics Letters, 2008, 92, 211501.	3.3	13
83	Experimental results on microwave pulse compression using helically corrugated waveguide. Journal of Applied Physics, 2010, 108, 054908.	2.5	13
84	Microwave Undulator Using a Helically Corrugated Waveguide. IEEE Transactions on Electron Devices, 2018, 65, 5499-5504.	3.0	13
85	Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA. Physics of Plasmas, 2018, 25, .	1.9	13
86	Systematic study of a corrugated waveguide as a microwave undulator. Journal of Synchrotron Radiation, 2019, 26, 11-17.	2.4	13
87	Cyclotron maser radiation from inhomogeneous plasmas. Physics of Plasmas, 2011, 18, 022902.	1.9	12
88	Design and Measurement of a Terahertz Band Rectangular TE ₂₀ Mode Power Coupling Structure for High-Order Overmoded Multiple Sheet Electron Beam Devices. IEEE Electron Device Letters, 2020, 41, 920-923.	3.9	12
89	Design, Microfabrication, and Characterization of a Subterahertz-Band High-Order Overmoded Double-Staggered Grating Waveguide for Multiple-Sheet Electron Beam Devices. IEEE Transactions on Electron Devices, 2021, 68, 3021-3027.	3.0	12
90	Cherenkov interaction and post-acceleration experiments of high brightness electron beams from a pseudospark discharge. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 528, 378-381.	1.6	11

#	Article	IF	CITATIONS
91	Pseudospark-sourced Electron Beam for Millimeter Wave and Terahertz Radiation Generation. , 2009, , .		11
92	A Dual-Frequency Quasi-Optical Output System for a THz Gyro-Multiplier. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 674-681.	3.1	10
93	Multiple-beam and double-mode staggered double vane travelling wave tube with ultra-wide band. Scientific Reports, 2020, 10, 20159.	3.3	10
94	A four-stage depressed collector for a W-band gyro-BWO., 2011,,.		9
95	A cusp electron gun for millimeter wave gyro-devices. , 2012, , .		9
96	Design of a Kaâ€band MWâ€level high efficiency gyroklystron for accelerators. IET Microwaves, Antennas and Propagation, 2018, 12, 1752-1757.	1.4	9
97	Compact highâ€power millimetre wave sources driven by pseudosparkâ€sourced electron beams. IET Microwaves, Antennas and Propagation, 2019, 13, 1794-1798.	1.4	9
98	Wideband Rectangular TE ₁₀ to TE\$_{{{n}ext{0}}}\$ Mode Converters for Terahertz-Band High-Order Overmoded Planar Slow-Wave Structures. IEEE Transactions on Electron Devices, 2020, 67, 1259-1265.	3.0	9
99	Design and Microfabrication of an Interaction Circuit for a 0.3-THz Sheet Beam Extended Interaction Oscillator With Multiple-Mode Operation. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 425-432.	3.1	9
100	Simultaneous axial and rotational electron beam velocity measurement using a phosphor scintillator. Review of Scientific Instruments, 2001, 72, 2268-2270.	1.3	8
101	Investigation of Frequency-Selective Surfaces for a THz Gyromultiplier Output System. IEEE Transactions on Electron Devices, 2017, 64, 4678-4685.	3.0	8
102	A Compact Gradient Refractive Index Metamaterial Lens for Endfire Fan-Beam Radiation. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 2339-2343.	4.0	8
103	Characteristics of Pseudospark Discharge in Particle-in-Cell Simulations. IEEE Transactions on Electron Devices, 2021, 68, 3003-3009.	3.0	8
104	Dispersion and Dielectric Attenuation Properties of a Wideband Double-Staggered Grating Waveguide for Subterahertz Sheet-Beam Traveling-Wave Amplifiers. IEEE Transactions on Electron Devices, 2021, 68, 5826-5833.	3.0	8
105	A Broadband Extended Interaction Klystron Based on Multimode Operation. IEEE Transactions on Electron Devices, 2022, 69, 802-807.	3.0	8
106	Simulation of high power broadband cyclotron autoresonance maser amplifier and electron beam experiments. Review of Scientific Instruments, 2004, 75, 826-831.	1.3	7
107	Low-Loss Transmission Line for a 3.4-kW, 93-GHz Gyro-Traveling-Wave Amplifier. IEEE Transactions on Electron Devices, 2021, 68, 364-368.	3.0	7
108	8-Fold Helically Corrugated Interaction Region for High Power Gyroresonant THz Sources. IEEE Electron Device Letters, 2021, 42, 1544-1547.	3.9	7

#	Article	IF	Citations
109	An Easy-to-Fabricate Circular TEâ,,â,∤TEâ,€â,•Mode Generator. IEEE Transactions on Electron Devices, 2021, 68, 6532-6537.	3.0	7
110	Fivefold Helically Corrugated Waveguide for High-Power <i>>W</i> >-Band Gyro-Devices and Pulse Compression. IEEE Transactions on Electron Devices, 2022, 69, 347-352.	3.0	7
111	Experimental study of the space-energetic structure and dynamics of a subnanosecond, dense, subrelativistic electron bunch., 0,,.		6
112	Scaled design and test of a coupler for micro-reentrant square-cavities for millimeter wave klystrons. , 2013 , , .		6
113	Microwave coupler for Wâ€band micro reâ€entrant square cavities. IET Microwaves, Antennas and Propagation, 2016, 10, 764-769.	1.4	6
114	Pseudospark-sourced beam and its application in high-power millimeter-wave generation. Scientific Reports, 2021, 11, 19076.	3.3	6
115	Design and Measurement of Terahertz-Band Rectangular TE ₁₀ to Circular TE _{<i>n</i>1} /TE _{/TE_{/TE_{/TE_{/TE_{/1E_{/1E_{/1E_{/1E_{/1E_{/1E_{/1E_{/1E_{/1E_{/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E}/1E} /1E	4.6	6
116	A Novel Slow-Wave Structureâ€"Coupled Double Folded Waveguide Operating at High-Order TMâ,,â,€ Mode for Terahertz TWT. IEEE Electron Device Letters, 2021, 42, 1871-1874.	3.9	6
117	A co-harmonic gyro-oscillator with a novel interaction cavity. , 2009, , .		5
118	High-Current Electron Beams for High-Power Free-Electron Masers Based on Two-Dimensional Periodic Lattices. IEEE Transactions on Plasma Science, 2010, 38, 751-763.	1.3	5
119	Study of a pseudospark-sourced G-band EIO. , 2015, , .		5
120	Coupling Structure for a High- $\langle i \rangle Q \langle i \rangle$ Corrugated Cavity as a Microwave Undulator. IEEE Transactions on Electron Devices, 2019, 66, 4392-4397.	3.0	5
121	An Extended Interaction Oscillator Capable of Continuous Multimode Operation. IEEE Transactions on Electron Devices, 2021, 68, 6470-6475.	3.0	5
122	RF Pulse Compression Using Helically Corrugated Waveguides. AIP Conference Proceedings, 2006, , .	0.4	4
123	Experimental test of a W-band gyro-TWA for cloud radar applications. , 2016, , .		4
124	Input coupling systems for millimetreâ€wave gyrotron travelling wave amplifiers. IET Microwaves, Antennas and Propagation, 2018, 12, 1748-1751.	1.4	4
125	Horizontal Polarized DC Grounded Omnidirectional Antenna for UAV Ground Control Station. Sensors, 2021, 21, 2763.	3.8	4
126	Performance Enhancement of Photoconductive Antenna Using Saw-Toothed Plasmonic Contact Electrodes. Electronics (Switzerland), 2021, 10, 2693.	3.1	4

#	Article	IF	CITATIONS
127	A Terahertz Band TE ₂₀ ^{â—¡} Mode Input/Output Coupling Structure for Dual-Sheet-Beam Traveling-Wave Tubes. IEEE Transactions on Plasma Science, 2022, 50, 1360-1368.	1.3	4
128	A Sub-THz High-Order Mode Backward Wave Oscillator Driven by Pseudospark Sourced Multiple Sheet Electron Beams. IEEE Transactions on Electron Devices, 2022, 69, 5216-5222.	3.0	4
129	A W-band Gyro-BWO based on a Helically Corrugated Waveguide. , 2006, , .		3
130	The Design and Simulation of a W-band Gyro-BWO. , 2007, , .		3
131	Latest development of a W-band Gyro-TWA based on a helically corrugated interaction region. , 2015, , .		3
132	Design and Stability Analysis of a High-Order Mode-Staggered Double Vane Traveling Wave Tube With Two Pencil Beams at G-Band. IEEE Transactions on Plasma Science, 2021, 49, 3029-3034.	1.3	3
133	A Multimode Extended Interaction Oscillator With Broad Continuous Electric Tuning Range. IEEE Transactions on Electron Devices, 2022, 69, 3947-3952.	3.0	3
134	The design and simulation of a thermionic cusp-based axis-encircling electron beam for use in harmonic gyro-devices. , 0 , , .		2
135	The Design and Simulation of a Cusp Electron Beam Source for a W-Band Gyro-BWO Experiment. , 2007, , .		2
136	Investigation of a 200GHz microklystron driven by a small-scaled pseudospark electron beam., 2009,,.		2
137	Recent progress on a co-harmonic gyrotron. , 2011, , .		2
138	W-band gyro-TWA using a cusp electron gun and a helically corrugated interaction region. , 2013, , .		2
139	Latest experiments of W-band gyro-BWO using helically corrugated waveguides. , 2013, , .		2
140	TE10R–TE11c input coupler for a low-THz gyro-TWA. , 2015, , .		2
141	High pulse repetition frequency operation of a W-band Gyro-TWA based on a cusp electron beam source. , $2016, , .$		2
142	Input coupling systems for mm-wave amplifiers. , 2017, , .		2
143	Measurement of a W-band gyro-TWA experiment based on a helically corrugated interaction region. , 2017, , .		2
144	A high-power Schottky diode frequency multiplier chain at 360 GHz for Gyro-TWA applications. , 2017, , .		2

#	Article	IF	CITATIONS
145	Design and experiment of a broadband W-band gyro-TWA based on a helically corrugated interaction region. , 2017 , , .		2
146	Design and Simulation of a 0.37 THz Gyro-TWA. , 2019, , .		2
147	Compact Photonic-Crystals Based Isolator Using Ni–Zn Gyromagnetic Ferrite Posts. Applied Sciences (Switzerland), 2021, 11, 6177.	2.5	2
148	Low Gain Ripple and DC-Grounded Slant-Polarized Formulation With 360° Broadbeam Coverage. IEEE Access, 2020, 8, 224190-224199.	4.2	2
149	Design of a Sheet Electron Beam Gun for a Sub-terahertz Travelling Wave Amplifier. , 2020, , .		2
150	The Development of broadband millimeter-wave and terahertz gyro-TWAs. Terahertz Science & Technology, 2020, 13, 90-111.	0.5	2
151	Design of Compact and Easy-to-Fabricate Power Coupling Structures for Sub-Terahertz Sheet Beam Traveling Wave Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2622-2630.	4.6	2
152	Study of the ⟨i⟩Ï€⟨ i⟩-Mode Operation in the Extended Interaction Circuit. IEEE Transactions on Plasma Science, 2022, 50, 649-655.	1.3	2
153	A gyro-TWT with a weak sensitivity to electron velocity spread. , 0, , .		1
154	Experiments of a thermionic gyro-twa based on a helical interaction waveguide. , 0 , , .		1
155	Design and Simulation of a Thermionic Cusp Gun for a Gyro-TWA. AIP Conference Proceedings, 2006, , .	0.4	1
156	Comparison of Broadband Gyro-TWA Simulations with Experiments. , 2006, , .		1
157	Design and Simulation of W-Band Gyro-BWO based on a Helically Corrugated Waveguide. , 2007, , .		1
158	A Cusp Gun Gyro-TWA with Helical Interaction Region. , 2007, , .		1
159	Broadband gyro-TWA with thermionic cusp gun: Simulations and comparison with experiment. , 2008, , .		1
160	The simulation of an high power 390GHz large-orbit harmonic gyrotron. , 2008, , .		1
161	A fast multilayer window design tool, simulations and comparison with experiment. , 2008, , .		1
162	The design of a 390 GHz gyrotron based on a cusp electron gun. , 2008, , .		1

#	Article	IF	CITATIONS
163	Design, simulation and experiment of a cusp electron beam for millimeter wave gyro-devices. , 2009, , .		1
164	Simulation of a four-stage depressed collector for a W-band Gyro-BWO. , 2010, , .		1
165	10.4: Experimental demonstration of a W-band gyro-BWO using a helically corrugated waveguide. , 2010, , .		1
166	Experimental demonstration of a W-band gyro-BWO using a helically corrugated waveguide. , 2010, , .		1
167	Pseudospark-produced micro-sized electron beams for high frequency klystron applications. , 2011, , .		1
168	High frequency radiation generation using pseudospark-sourced e-beam., 2012,,.		1
169	A high directivity broadband corrugated horn for W-band gyro-devices. , 2012, , .		1
170	A broadband corrugated horn for a W-band gyro-TWA. , 2012, , .		1
171	Numerical investigation of gyro-multiplier schemes. , 2012, , .		1
172	Pseudospark-sourced micro electron beam for a W-band klystron amplifier. , 2012, , .		1
173	An input coupler for a W-band gyro-TWA. , 2013, , .		1
174	A corrugated horn with broadband window for W-band gyro-devices. , 2015, , .		1
175	Further experiments of a W-band gyro-TWA based on a helically corrugated interaction region. , 2015, , .		1
176	Design of a Ka-band MW-level high efficiency gyroklystron for accelerators., 2017,,.		1
177	Measurement of an upgraded input coupling system for W-band gyro-TWA., 2017, , .		1
178	Design of a multilayer output window for a 372 GHz gyro-TWA. , 2017, , .		1
179	Broadband output windows for THz gyro-TWAs. , 2018, , .		1
180	Compact Lightweight High Power Millimeter Wave Sources using Pseudospark Plasma Electron Beams. , 2018, , .		1

#	Article	IF	CITATIONS
181	Output broadband multilayer microwave windows for terahertz gyro-TWAs., 2018,,.		1
182	0.37 THz gyro-TWA with a cryo-free SCM: Design and simulation. , 2019, , .		1
183	<i>G</i> -Band High-Power and Ultrawide Band Staggered Double-Vane Slow-Wave Circuit With Double Beams. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 23-29.	3.1	1
184	Compact and Broadband Multi-aperture Coupler for Terahertz Sheet Beam Travelling Wave Tubes. , 2021, , .		1
185	Design and Simulation of a Terahertz High-order Mode Power Coupler for Sheet Beam Traveling Wave Amplifiers. , 2021, , .		1
186	Design of a TE11 - TE21 Mode Converter Based on a Three-fold Helically Corrugated Waveguide. , 2021, , .		1
187	Preliminary Study of a Terahertz TE20 Mode Input/Output Coupling Structure. , 2021, , .		1
188	A Millimeter-Wave Circularly Polarized Antenna for 5G Applications. , 2021, , .		1
189	A 32-GHz Broadband mm-wave Power Amplifier in 45-nm SOI Technology. , 2021, , .		1
190	Folded Double Ridge Groove Waveguide for High-power Terahertz Traveling Wave Tube with Sheet Electron Beam., 2020,,.		1
191	Development of a Sub-terahertz Sheet Beam Travelling Wave Tube. , 2020, , .		1
192	Design and Measurement of Power-Coupling Structure for Parallel Operation of Two Folded Groove Waveguides. IEEE Transactions on Electron Devices, 2022, 69, 2650-2655.	3.0	1
193	A Dual-polarized Lens Antenna Using LTCC Based Phase-shifting Surface for D Band Applications. , 2022, , , .		1
194	Study of Terahertz-band Sheet Electron Beam Extended Interaction Oscillators. , 2022, , .		1
195	Efficient wide-band gyro-TWT with helically grooved waveguide. , 0, , .		O
196	Pseudospark-based electron beam production and post-acceleration. , 0, , .		0
197	Potential for increasing the power of free electron masers using novel 2D Bragg coaxial structures. , 0, , .		O
198	Free electron maser amplifier energy recovery experiments. , 0, , .		0

#	Article	IF	CITATIONS
199	Electron beam and cherenkov interaction experiments based on pseudospark discharge. , 0, , .		O
200	Compression of frequency modulated microwave pulses in waveguides. , 0, , .		0
201	High Power RF Generation by Compression of Frequency Modulated Pulses. AIP Conference Proceedings, 2003, , .	0.4	0
202	High power free electron maser based on a two-dimensional Bragg cavity. , 0, , .		0
203	Microwave pulse compression using a helically corrugated waveguide. , 0, , .		0
204	Gyro-BWO experiments using a helical interaction waveguide based on a thermionic cathode. , 0, , .		0
205	Operation of a thermionic gyro-TWT with a helical interaction waveguide. , 0, , .		0
206	Thermionic gyro-BWO experiment using a helical interaction waveguide. , 0, , .		0
207	Free electron maser experiments based on a coaxial 2D bragg cavity. , 0, , .		0
208	Werowave pulse compression using helically corrugated waveguides and its potential for generating ultra-high power RF radiation. , 0 , , .		0
209	High power microwave amplification using a novel fast wave Gyro-TWA., 0,,.		0
210	Results from therminnic cathode gyro-TWA experiments. , 0, , .		0
211	Compression of frequency-swept microwave pulses using a helically corrugated waveguide., 0,,.		0
212	Experimental study of a FEM based on a 2D distributed feedback cavity., 0,,.		0
213	Co-axial Ka-band Free Electron Maser Using Two-dimensional Feedback. AIP Conference Proceedings, 2006, , .	0.4	0
214	Broadband Gyro-TWA Simulations and Comparison with Experiment. , 2006, , .		0
215	Design and Simulation of a Cusp Gun for use in Gyro-amplifiers. , 2006, , .		0
216	Microwave Pulse Compression using Helically Corrugated Waveguides. , 0, , .		0

#	Article	IF	CITATIONS
217	Electron and ion beam generation from a pseudospark. , 2006, , .		О
218	First operation of free-electron maser based on a two-mirror cavity defined by 2D and 1D bragg structures. , 2006, , .		0
219	Modelling of Cusp Gun for a Gyro-TWA. , 0, , .		O
220	A cusp gun for gyro-amplifiers. , 2007, , .		0
221	Response to "Comment on †High current oversized electron beam formation for high-power microwave research†[Appl. Phys. Lett. 89, 171503 (2006)]â€, Applied Physics Letters, 2007, 90, 266102.	3.3	0
222	Experimental Investigation of a cusp Gun gyro-TWA with Helical Interaction Region. , 2007, , .		0
223	A W-band Gyro-BWO based on helically corrugated waveguide. , 2007, , .		O
224	Pseudospark sourced beam-wave interaction experiments., 2007,,.		0
225	Compression of frequency-modulated pulses from a relativistic BWO up to multigigawatt powers. , 2007, , .		0
226	Pseudospark Sourced E- Beam Interaction with a Backward Travelling Wave., 2007,,.		0
227	Helically corrugated waveguides for compression of microwave pulses. , 2008, , .		O
228	Coaxial 2D-1D two-mirror cavity free-electron maser experiment. , 2008, , .		0
229	Laboratory Reproduction of Auroral Magnetospheric Radio Wave Sources. , 2008, , .		O
230	High power masers based on 2D periodic structures: From the GHz to THz frequency range. , 2008, , .		0
231	A ∼10kW W-Band Gyro-BWO using a helically corrugated waveguide., 2008,,.		O
232	Investigation of a 200GHz microklystron driven by a small diameter pseudospark electron beam., 2009,		0
233	Investigation of a terahertz multicavity microklystron driven by a pseudospark electron beam. , 2009, ,		0
234	Numerical study of pseudospark discharge based electron beam source for terahertz generation. , 2009, , .		0

#	Article	IF	CITATIONS
235	High current electron beams for high power FEM based on 2D periodic lattices. , 2009, , .		O
236	Compression of pulses from a relativistic bwo using helically corrugated waveguides. , 2009, , .		0
237	Radiation generation at 94 GHz with a pseudospark-sourced electron beam. , 2010, , .		0
238	The design of a 390 GHz gyrotron based on a cusp electron gun. , 2010, , .		0
239	A laboratory study of mechanisms for auroral kilometric radiation generation. , 2010, , .		O
240	Electron gun design for large orbit axis encircling beams., 2010,,.		0
241	A W-band gyro-TWA using a helically corrugated waveguide. , 2010, , .		O
242	Radiation generation at 94 GHz from a pseudospark-sourced electron beam., 2011,,.		0
243	A W-band gyrotron traveling wave amplifier based on a cusp electron gun. , 2011, , .		O
244	Design of a broadband corrugated horn for a W-band gyro-TWA., 2011,,.		0
245	Investigation of a laboratory plasma for a geophysical simulation experiment., 2011,,.		O
246	Wideband fast wave amplifiers., 2011,,.		0
247	Free electron maser amplifier experiments. , 2011, , .		O
248	High power broadband gyro-TWAs operating in terahertz frequency range. , 2012, , .		0
249	A high-energy pulsed-power supply for high-power microwave sources. , 2012, , .		O
250	Experimental study on a W-band Gyro-BWO with a helically corrugated waveguide. , 2012, , .		0
251	A high-power Ka-band Free-Electron Maser, defined by a 2D – 1D Bragg lasing cavity. , 2012, , .		0
252	3-D numerical simulation of novel gyro-multiplier schemes. , 2012, , .		0

#	Article	lF	CITATIONS
253	A W-band gyro-twa based on a CUSP electron gun and helically corrugated waveguide. , 2012, , .		O
254	Components for the cold-testing of a co-harmonic gyrotron. , 2012, , .		0
255	Investigations into auroral electron cycylotron radio emission processes by laboratory experiments and numerical simulations. , 2012, , .		0
256	X-band pulse compression using a five-fold helically corrugated waveguide. , 2012, , .		0
257	Pulse compression using a five-fold helically corrugated waveguide. , 2012, , .		0
258	The dispersion characteristics of helically corrugated waveguide. , 2012, , .		0
259	Pseudospark produced micro-sized electron beams for millimeter-wave and terahertz radiation generation. , 2012, , .		0
260	W-band gyro-devices using cusp electron gun and helically corrugated interaction region., 2012,,.		0
261	Helically corrugated 35GHz gyro-TWA, simulations and measurement. , 2012, , .		0
262	Energy recovery system for a W-band gyro-BWO. , 2012, , .		0
263	Updates on a W-band Gyro-BWO using a helically corrugated waveguide experiment., 2012,,.		0
264	W-band Gyro-TWA experiment using a helically corrugated waveguide. , 2012, , .		0
265	Ka-band gyro-TWA simulations and comparison with experiment. , 2012, , .		O
266	Numerical simulation of a 1.37 THz gyro-multiplier. , 2013, , .		0
267	Ka-band gyro-TWA waveguide severs for circularly polarized waves. , 2013, , .		0
268	Magic 3-D simulations of a 1.37 THz gyro-multiplier. , 2013, , .		0
269	Microwave windows for W-band gyro-devices. , 2013, , .		0
270	Latest developments on a W-band gyro-TWA. , 2013, , .		0

#	Article	IF	CITATIONS
271	200 GHz BWO experiment with a pseudospark-sourced electron beam., 2013,,.		О
272	Application of a pseudospark-generated electron beam to a 200GHz backward wave oscillator., 2013,,.		0
273	A W-band gyrotron traveling wave amplifier experiment. , 2014, , .		O
274	Millimeter-wave backward wave oscillators driven by pseudospark electron beams., 2014,,.		0
275	Cold test of a G-band sheet beam backward wave oscillator. , 2014, , .		O
276	Developments of a W-band gyro-TWA for high PRF operation. , 2015, , .		0
277	A wide-band HE <inf>11</inf> mode window for millimeter wave gyro-TWAs., 2015, , .		O
278	Multilayer microwave windows for wideband gyro-amplifiers. , 2015, , .		0
279	Applications of Pseudospark produced electron beams in millimetre wave radiation sources., 2015,,.		O
280	W-band Brewster window for a wideband gyro-TWA. , 2015, , .		0
281	Application of a pseudospark-generated electron beam to a 200 GHz backward wave oscillator. , 2015, , .		O
282	Development of a wide-band HE <inf>11</inf> mode window for a W-band gyro-TWA., 2015,,.		0
283	Development of a novel W-band side-wall coupler for a gyro-TWA. , 2015, , .		O
284	High power W-band gyro-BWO experiments. , 2015, , .		0
285	W-band quasi-optical mode converter for gyro-devices. , 2015, , .		О
286	A W-band corrugated output horn and window for gyro-devices. , 2015, , .		0
287	Design and experiments of a five-fold helically corrugated waveguide for microwave pulse compression. , 2015, , .		0
288	Design of a spline horn for a W-band gyro-TWA. , 2016, , .		0

#	Article	IF	CITATIONS
289	Measurement of a broadband millimeter wave window for application in vacuum tubes., 2016,,.		0
290	Measurement of a high Gaussian-content corrugated horn for a W-band gyro-TWA. , 2016, , .		0
291	Simulation of rectangular TE <inf>10</inf> to circular TE <inf>11</inf> terahertz mode converters. , 2016, , .		O
292	Multilayer windows for broadband millimeter/terahertz wave vacuum electron devices., 2017,,.		0
293	W-band extended interaction oscillations using post-accelerated pseudospark-sourced electron beams., 2017,,.		0
294	Performance measurements of mode-converting corrugated horns., 2017,,.		0
295	Demonstration of a high power broadband mm-wave gyro-TWA. , 2017, , .		0
296	Smoothly profiled quasi-optical output launcher for a W-band gyro-TWA. , 2017, , .		0
297	Measurement of a W-band output launcher system for a broadband gyro-TWA. , 2017, , .		O
298	A multiple-hole input coupler for a 372 GHz gyro-travelling wave amplifier. , 2017, , .		0
299	Design of a TE<inf> 10 </inf>-to-TE<inf> 61 </inf> mode coupler for a 372 GHz gyrotron travelling wave amplifier., 2017 ,,.		O
300	Study of millimetre wave extended interaction oscillation using pseudospark-sourced E-beams. , 2017, , .		0
301	Measurement of a broadband high power gyro-TWA operating in W-band frequency. , 2017, , .		O
302	Investigation of millimeter wave extended interaction oscillation using improved pseudospark-sourced electron beams. , 2017, , .		0
303	W-Band Gyrotron Travelling Wave Amplifier Experiment Based on a Helically Corrugated Waveguide. , 2017, , .		O
304	Beam Profile And Position Instability Of A Post-Accelerated Pseudospark-Sourced Electron Beam For An Extended Interaction Oscillator. , $2017, \dots$		0
305	W-band klystron upconverter driven by pseudospark-sourced electron beam. , 2017, , .		O
306	Millimeter wave extended interaction oscillator based on pseudospark-sourced electron beam. , 2017, , .		0

#	Article	IF	CITATIONS
307	Experimental study of terahertz radiation sources based on a planar slow wave structure and a pseudospark-sourced sheet electron beam. , $2018, , .$		0
308	Amplification of W-band multi-frequency signals using a gyro-TWA. , 2018, , .		0
309	Design of a gridded cusp gun for a W-band gyro-TWA. , 2018, , .		0
310	Measurement of W-band gyro-TWA with wide bandwidth input signal. , 2018, , .		0
311	Input coupling systems for terahertz gyro-TWAs., 2018,,.		0
312	Design of a Ka-band microwave undulator. , 2018, , .		0
313	Output coupler for a THz gyro-amplifier. , 2019, , .		O
314	Characteristic measurements of a wideband gyro-TWA operating in W-band. , 2019, , .		0
315	Measurement of a broadband input coupler for a W-band gyro-TWA. , 2019, , .		0
316	Effects of Tolerance Fabrication of Extended Interaction Oscillator Based on Pseudospark-sourced Sheet Electron Beam at 0.35 THz. , 2019 , , .		0
317	Gridded Cusp Gun for a Terahertz Gyro-Amplifier. , 2019, , .		0
318	Cusp electron gun with modulation electrode for a THz gyro-amplifier. , 2019, , .		0
319	Design of Planar Millimeter-Wave Metallic Structures for Wakefield Acceleration. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 48-62.	2.2	0
320	Preliminary Study of a Terahertz-band Sheet Beam Extended Interaction Oscillator., 2021,,.		0
321	Numerical and Experimental Validation of the Passive Performance of a Coharmonic Gyro-Multiplier Interaction Region. IEEE Transactions on Microwave Theory and Techniques, 2021, , 1-1.	4.6	0
322	Design of a Compact TEâ—; 40 Mode Converter Based on Power Divider Principle. , 2021, , .		0
323	High-order Overmoded Based Multiple Sheet Electron Beam Devices. , 2021, , .		O
324	Design of an Electron-Optical System for Sheet Electron Beam Traveling Wave Tubes., 2021,,.		0

#	Article	IF	CITATIONS
325	A Dual-Polarized Fabry-PÃ \otimes rot Antenna for Millimete-wave Application $ \$ underline $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$		О
326	Design of Broadband Low-Noise Amplifier in 45-nm SOI Technology. , 2021, , .		O
327	Updates on the Development of MW-level Ka-band Gyroklystron. , 2021, , .		O
328	Study of High-order Overmoded Power Couplers for Multiple Sheet Electron Beam Devices. , 2020, , .		0
329	Compact THz Extended Interaction Oscillator Driven by a Pseudospark-sourced beam. , 2020, , .		O
330	Design of a Terahertz-band Rectangular TE10-TEn0Mode Converter. , 2020, , .		0
331	Design of a Sheet Electron Beam Focusing System for a Sub-terahertz Traveling Wave Tube. , 2020, , .		О
332	Parallel Arrangement Folded Double-Ridge Groove Waveguide for High-Power Terahertz Traveling-Wave Tube. IEEE Transactions on Plasma Science, 2021, 49, 3519-3523.	1.3	0
333	Preliminary Cold Test of a Terahertz Band Sheet Beam Travelling Wave Tube. , 2020, , .		О
334	Design of Fan-Beam Antenna Using High Refractive Index Metasurface., 2021,,.		0
335	A Feeding Method to Excite D-band Dual-polarized Lens Antenna. , 2021, , .		О