Marc Foretz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/965592/publications.pdf

Version: 2024-02-01

174 papers 21,354 citations

73 h-index

9786

9861 141 g-index

197 all docs

197 docs citations

197 times ranked 28009 citing authors

#	Article	IF	CITATIONS
1	Direct AMPK Activation Corrects NASH in Rodents Through Metabolic Effects and Direct Action on Inflammation and Fibrogenesis. Hepatology Communications, 2022, 6, 101-119.	4.3	35
2	Inactivation of AMPK Leads to Attenuation of Antigen Presentation and Immune Evasion in Lung Adenocarcinoma. Clinical Cancer Research, 2022, 28, 227-237.	7.0	11
3	Intestinal Epithelial AMPK Deficiency Causes Delayed Colonic Epithelial Repair in DSS-Induced Colitis. Cells, 2022, 11, 590.	4.1	13
4	At the crossroads of fertility and metabolism: the importance of AMPK-dependent signaling in female infertility associated with hyperandrogenism. Human Reproduction, 2022, 37, 1207-1228.	0.9	13
5	Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight, 2022, 7, .	5.0	6
6	Deletion of intestinal epithelial AMP-activated protein kinase alters distal colon permeability but not glucose homeostasis. Molecular Metabolism, 2021, 47, 101183.	6.5	17
7	Dual targeting of salt inducible kinases and CSF1R uncouples bone formation and bone resorption. ELife, 2021, 10, .	6.0	12
8	Role of Cardiac AMP-Activated Protein Kinase in a Non-pathological Setting: Evidence From Cardiomyocyte-Specific, Inducible AMP-Activated Protein Kinase $\hat{l}\pm 1\hat{l}\pm 2$ -Knockout Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 731015.	3.7	7
9	Metformin reduces macrophage HIF1 \hat{l} ±-dependent proinflammatory signaling to restore brown adipocyte function in vitro. Redox Biology, 2021, 48, 102171.	9.0	15
10	Lack of Endothelial $\hat{l}\pm 1$ AMPK Reverses the Vascular Protective Effects of Exercise by Causing eNOS Uncoupling. Antioxidants, 2021, 10, 1974.	5.1	4
11	Acetyl-CoA Carboxylase Inhibitor CP640.186 Increases Tubulin Acetylation and Impairs Thrombin-Induced Platelet Aggregation. International Journal of Molecular Sciences, 2021, 22, 13129.	4.1	4
12	Transcriptional block of AMPK-induced autophagy promotes glutamate excitotoxicity in nutrient-deprived SH-SY5Y neuroblastoma cells. Cellular and Molecular Life Sciences, 2020, 77, 3383-3399.	5 . 4	20
13	Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. Journal of Lipid Research, 2020, 61, 1697-1706.	4.2	6
14	Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nature Communications, 2020, 11, 6127.	12.8	21
15	Hypoglycemia-Sensing Neurons of the Ventromedial Hypothalamus Require AMPK-Induced Txn2 Expression but Are Dispensable for Physiological Counterregulation. Diabetes, 2020, 69, 2253-2266.	0.6	19
16	Activation of Adenosine Monophosphate—Activated Protein Kinase Reduces the Onset of Dietâ€Induced Hepatocellular Carcinoma in Mice. Hepatology Communications, 2020, 4, 1056-1072.	4.3	6
17	Reciprocity Between Skeletal Muscle AMPK Deletion and Insulin Action in Diet-Induced Obese Mice. Diabetes, 2020, 69, 1636-1649.	0.6	11
18	Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Molecular Metabolism, 2020, 40, 101028.	6.5	32

#	Article	IF	Citations
19	Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents. Journal of Biological Chemistry, 2020, 295, 5836-5849.	3.4	11
20	Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation. Journal of Biological Chemistry, 2020, 295, 3330-3346.	3.4	22
21	The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging and cancer. Life Science Alliance, 2020, 3, e201900481.	2.8	28
22	Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 569-589.	9.6	391
23	AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. FASEB Journal, 2019, 33, 12374-12391.	0.5	57
24	AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells. International Journal of Molecular Sciences, 2019, 20, 5171.	4.1	38
25	Inhibition of mitochondrial complex 1 by the S6K1 inhibitor PF-4708671 partly contributes to its glucose metabolic effects in muscle and liver cells. Journal of Biological Chemistry, 2019, 294, 12250-12260.	3.4	16
26	AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction. Diabetes, 2019, 68, 1427-1440.	0.6	67
27	Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell, 2019, 177, 1201-1216.e19.	28.9	100
28	Phenformin, But Not Metformin, Delays Development of T Cell Acute Lymphoblastic Leukemia/Lymphoma via Cell-Autonomous AMPK Activation. Cell Reports, 2019, 27, 690-698.e4.	6.4	54
29	Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cellular Signalling, 2019, 57, 45-57.	3.6	18
30	Endothelial $\hat{l}\pm 1$ AMPK modulates angiotensin II-mediated vascular inflammation and dysfunction. Basic Research in Cardiology, 2019, 114, 8.	5.9	32
31	Finely-tuned regulation of AMP-activated protein kinase is crucial for human adult erythropoiesis. Haematologica, 2019, 104, 907-918.	3.5	8
32	Salt-inducible kinases dictate parathyroid hormone 1 receptor action in bone development and remodeling. Journal of Clinical Investigation, 2019, 129, 5187-5203.	8.2	28
33	LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration. Cell Reports, 2018, 22, 1994-2005.	6.4	23
34	Measurement of AMPK-Induced Inhibition of Lipid Synthesis Flux in Cultured Cells. Methods in Molecular Biology, 2018, 1732, 363-371.	0.9	3
35	AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine, 2018, 28, 194-209.	6.1	136
36	Promise and challenges for direct small molecule AMPK activators. Biochemical Pharmacology, 2018, 153, 147-158.	4.4	63

#	Article	IF	CITATIONS
37	AMPK in skeletal muscle function and metabolism. FASEB Journal, 2018, 32, 1741-1777.	0.5	289
38	AMPK Activation Reduces Hepatic Lipid Content by Increasing Fat Oxidation In Vivo. International Journal of Molecular Sciences, 2018, 19, 2826.	4.1	98
39	The LKB1â \in "AMPK-Î ± 1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria. Science Signaling, 2018, 11, .	3.6	27
40	Activation of AMPK for a Break in Hepatic Lipid Accumulation and Circulating Cholesterol. EBioMedicine, 2018, 31, 15-16.	6.1	5
41	Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 2018, 16, 24-34.	6.5	58
42	$\hat{l}\pm 1$ AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovascular Research, 2018, 114, 1883-1893.	3.8	22
43	Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends in Endocrinology and Metabolism, 2018, 29, 723-735.	7.1	92
44	A functional role for AMPK in female fertility and endometrial regeneration. Reproduction, 2018, 156, 501-513.	2.6	13
45	Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Molecular Metabolism, 2017, 6, 159-172.	6.5	11
46	Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice. Cell Metabolism, 2017, 25, 1147-1159.e10.	16.2	205
47	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
48	AMPK is not required for the effect of metformin on the inhibition of BMP6-induced hepcidin gene expression in hepatocytes. Scientific Reports, 2017, 7, 12679.	3.3	12
49	Transgenic Mice Expressing Human Proteinase 3 Exhibit Sustained Neutrophil-Associated Peritonitis. Journal of Immunology, 2017, 199, 3914-3924.	0.8	12
50	Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. Journal of Biological Chemistry, 2017, 292, 20125-20140.	3.4	46
51	Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice. Journal of Nutrition, 2017, 147, 1669-1676.	2.9	27
52	Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes, 2017, 66, 598-612.	0.6	137
53	Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation. PLoS ONE, 2017, 12, e0170382.	2.5	20
54	Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK. Diabetes, 2016, 65, 188-200.	0.6	127

#	Article	IF	Citations
55	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	3.5	53
56	AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nature Communications, 2016, 7, 10856.	12.8	117
57	Myeloid-Restricted AMPKα1 Promotes Host Immunity and Protects against IL-12/23p40–Dependent Lung Injury during Hookworm Infection. Journal of Immunology, 2016, 196, 4632-4640.	0.8	23
58	Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1412-1422.	3.8	8
59	Gain-of-function Prolactin Receptor Variants Are Not Associated With Breast Cancer and Multiple Fibroadenoma Risk. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4449-4460.	3.6	10
60	AMPK/α-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in the Prdm16 Promoter and Brown Adipogenesis. Cell Metabolism, 2016, 24, 542-554.	16.2	195
61	Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation Research, 2016, 119, 652-665.	4.5	498
62	Animal Models to Study AMPK. Exs, 2016, 107, 441-469.	1.4	5
63	SIKs control osteocyte responses to parathyroid hormone. Nature Communications, 2016, 7, 13176.	12.8	124
64	Specific deletion of AMP-activated protein kinase ($\hat{l}\pm 1$ AMPK) in mouse Sertoli cells modifies germ cell quality. Molecular and Cellular Endocrinology, 2016, 423, 96-112.	3.2	34
65	AMP-activated Protein Kinase Deficiency Blocks the Hypoxic Ventilatory Response and Thus Precipitates Hypoventilation and Apnea. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1032-1043.	5.6	41
66	Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance. PLoS ONE, 2016, 11, e0149549.	2.5	13
67	AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?. Current Drug Targets, 2016, 17, 942-953.	2.1	28
68	Salt-inducible kinase 2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. Journal of Cell Science, 2015, 128, 472-86.	2.0	71
69	Specific Deletion of AMP-Activated Protein Kinase ($\hat{l}\pm 1$ AMPK) in Murine Oocytes Alters Junctional Protein Expression and Mitochondrial Physiology. PLoS ONE, 2015, 10, e0119680.	2.5	28
70	LKB1 and AMPKα1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Molecular Metabolism, 2015, 4, 277-286.	6. 5	23
71	The PRKAA1/AMPK $\hat{l}\pm 1$ pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy, 2015, 11, 1114-1129.	9.1	86
72	Metformin takes a new route to clinical efficacy. Nature Reviews Endocrinology, 2015, 11, 390-392.	9.6	14

#	Article	IF	CITATIONS
73	Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Reports, 2015, 11, 1446-1457.	6.4	93
74	Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis. PLoS Pathogens, 2015, 11, e1004684.	4.7	96
75	Activation of AMPK $\hat{1}\pm2$ in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nature Medicine, 2015, 21, 373-382.	30.7	143
76	Expanding roles for AMPK in skeletal muscle plasticity. Trends in Endocrinology and Metabolism, 2015, 26, 275-286.	7.1	111
77	Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cellular Signalling, 2015, 27, 978-988.	3.6	143
78	AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E900-E914.	3.5	28
79	AMPK Signaling Involvement for the Repression of the IL- $1^{\hat{1}^2}$ -Induced Group IIA Secretory Phospholipase A2 Expression in VSMCs. PLoS ONE, 2015, 10, e0132498.	2.5	11
80	Adenosine-Mono-Phosphate-Activated Protein Kinase-Independent Effects of Metformin in T Cells. PLoS ONE, 2014, 9, e106710.	2.5	31
81	The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications, 2014, 5, 4535.	12.8	131
82	5-Aminoimidazole-4-carboxamide- 1 - 1^2 -d-ribofuranoside (AICAR) Effect on Glucose Production, but Not Energy Metabolism, Is Independent of Hepatic AMPK in Vivo. Journal of Biological Chemistry, 2014, 289, 5950-5959.	3.4	60
83	The AMPK-SIRT signaling network regulates glucose tolerance under calorie restriction conditions. Life Sciences, 2014, 100, 55-60.	4.3	33
84	A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochemical Journal, 2014, 460, 363-375.	3.7	71
85	PRKAA1/AMPK \hat{i} t is required for autophagy-dependent mitochondrial clearance during erythrocyte maturation. Autophagy, 2014, 10, 1522-1534.	9.1	31
86	Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth. European Journal of Cancer, 2014, 50, 3187-3197.	2.8	28
87	Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 2014, 20, 953-966.	16.2	1,019
88	Mechanism of Action of Compound-13: An $\hat{l}\pm 1$ -Selective Small Molecule Activator of AMPK. Chemistry and Biology, 2014, 21, 866-879.	6.0	103
89	LKB1 and AMPK regulate synaptic remodeling in old age. Nature Neuroscience, 2014, 17, 1190-1197.	14.8	106
90	AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB Journal, 2014, 28, 3211-3224.	0.5	182

#	Article	IF	Citations
91	AMPKl±1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression. Journal of Hepatology, 2014, 60, 152-159.	3.7	38
92	Bypassing AMPK Phosphorylation. Chemistry and Biology, 2014, 21, 567-569.	6.0	12
93	Nervous glucose sensing regulates postnatal \hat{l}^2 cell proliferation and glucose homeostasis. Journal of Clinical Investigation, 2014, 124, 413-424.	8.2	62
94	Co-Activation of AMPK and mTORC1 Is Synthetically Lethal in Acute Myeloid Leukemia. Blood, 2014, 124, 616-616.	1.4	0
95	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
96	TIM-4 Glycoprotein-Mediated Degradation of Dying Tumor Cells by Autophagy Leads to Reduced Antigen Presentation and Increased Immune Tolerance. Immunity, 2013, 39, 1070-1081.	14.3	100
97	Revisiting the mechanisms of metformin action in the liver. Annales D'Endocrinologie, 2013, 74, 123-129.	1.4	57
98	AMP-Activated Protein Kinase $\hat{l}\pm 1$ but Not $\hat{l}\pm 2$ Catalytic Subunit Potentiates Myogenin Expression and Myogenesis. Molecular and Cellular Biology, 2013, 33, 4517-4525.	2.3	57
99	Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013, 494, 256-260.	27.8	707
100	Overexpression of AMP-activated protein kinase or protein kinase D prevents lipid-induced insulin resistance in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2013, 55, 165-173.	1.9	14
101	<scp>AMPK</scp> î±1: A glucose sensor that controls <scp>CD</scp> 8 <scp>T</scp> â€cell memory. European Journal of Immunology, 2013, 43, 889-896.	2.9	201
102	Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Biochemical Journal, 2013, 455, 195-206.	3.7	50
103	AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. American Journal of Physiology - Cell Physiology, 2013, 305, C887-C895.	4.6	37
104	AMPK Activation by Oncogenesis Is Required to Maintain Cancer Cell Proliferation in Astrocytic Tumors. Cancer Research, 2013, 73, 2628-2638.	0.9	112
105	Connection Between Cardiac Vascular Permeability, Myocardial Edema, and Inflammation During Sepsis. Critical Care Medicine, 2013, 41, e411-e422.	0.9	48
106	AMPK Activation through Mitochondrial Regulation Results in Increased Substrate Oxidation and Improved Metabolic Parameters in Models of Diabetes. PLoS ONE, 2013, 8, e81870.	2.5	48
107	Hepatic glucose sensing is required to preserve \hat{l}^2 cell glucose competence. Journal of Clinical Investigation, 2013, 123, 1662-1676.	8.2	118
108	AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochemical Journal, 2012, 443, 193-203.	3.7	98

#	Article	IF	CITATIONS
109	Hepatic Peroxisome Proliferator-Activated Receptor î³ Coactivator 1î± and Hepcidin Are Coregulated in Fasted/Refed States in Mice. Clinical Chemistry, 2012, 58, 1487-1488.	3.2	2
110	AMP-Activated Protein Kinase $\hat{l}\pm 1$ Protects Against Diet-Induced Insulin Resistance and Obesity. Diabetes, 2012, 61, 3114-3125.	0.6	39
111	Inactivation of AMPKα1 Induces Asthenozoospermia and Alters Spermatozoa Morphology. Endocrinology, 2012, 153, 3468-3481.	2.8	78
112	Maintenance of Metabolic Homeostasis by Sestrin2 and Sestrin3. Cell Metabolism, 2012, 16, 311-321.	16.2	242
113	Cellular and molecular mechanisms of metformin: an overview. Clinical Science, 2012, 122, 253-270.	4.3	1,337
114	PPARÎ ³ contributes to PKM2 and HK2 expression in fatty liver. Nature Communications, 2012, 3, 672.	12.8	127
115	Macrophage AMPK $\hat{1}\pm 1$ is necessary for the resolution of inflammation during skeletal muscle regeneration. FASEB Journal, 2012, 26, 1078.5.	0.5	0
116	Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 423-430.	3.8	25
117	Regulation of hepatic metabolism by AMPK. Journal of Hepatology, 2011, 54, 827-829.	3.7	90
118	AMPK Regulates Circadian Rhythms in a Tissue- and Isoform-Specific Manner. PLoS ONE, 2011, 6, e18450.	2.5	113
119	Increased FAT/CD36 Cycling and Lipid Accumulation in Myotubes Derived from Obese Type 2 Diabetic Patients. PLoS ONE, 2011, 6, e28981.	2.5	34
120	Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia, 2011, 54, 3101-3110.	6.3	226
121	$\hat{l}\pm 1$ AMP-Activated Protein Kinase Preserves Endothelial Function During Chronic Angiotensin II Treatment by Limiting Nox2 Upregulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 560-566.	2.4	65
122	Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle, 2011, 10, 2640-2646.	2.6	75
123	AMP-activated Protein Kinase Suppresses Matrix Metalloproteinase-9 Expression in Mouse Embryonic Fibroblasts. Journal of Biological Chemistry, 2011, 286, 16030-16038.	3.4	50
124	The AMPKyl subunit plays an essential role in erythrocyte membrane elasticity, and its genetic inactivation induces splenomegaly and anemia. FASEB Journal, 2011, 25, 337-347.	0.5	33
125	Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation, 2011, 121, 2518-2528.	8.2	147
126	The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood, 2010, 116, 4262-4273.	1.4	173

#	Article	IF	Citations
127	Intramyocellular lipid accumulation is associated with permanent relocation ex vivo and in vitro of fatty acid translocase (FAT)/CD36 in obese patients. Diabetologia, 2010, 53, 1151-1163.	6.3	90
128	Maintenance of red blood cell integrity by AMPâ€activated protein kinase α1 catalytic subunit. FEBS Letters, 2010, 584, 3667-3671.	2.8	24
129	Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO Journal, 2010, 29, 1774-1785.	7.8	494
130	Glut2â€dependent glucoseâ€sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB Journal, 2010, 24, 1747-1758.	0.5	69
131	AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol. Diabetes, 2010, 59, 554-563.	0.6	595
132	Coordinated maintenance of muscle cell size control by AMPâ€activated protein kinase. FASEB Journal, 2010, 24, 3555-3561.	0.5	88
133	Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation, 2010, 120, 2355-2369.	8.2	1,001
134	AMPK inhibition in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 276-295.	5.2	330
135	AMPK: Lessons from transgenic and knockout animals. Frontiers in Bioscience - Landmark, 2009, Volume, 19.	3.0	248
136	Targeting the AMPK pathway for the treatment of Type 2 diabetes. Frontiers in Bioscience - Landmark, 2009, Volume, 3380.	3.0	227
137	AMP-activated Protein Kinase Phosphorylates R5/PTG, the Glycogen Targeting Subunit of the R5/PTG-Protein Phosphatase 1 Holoenzyme, and Accelerates Its Down-regulation by the Laforin-Malin Complex. Journal of Biological Chemistry, 2009, 284, 8247-8255.	3.4	53
138	Important role for AMPKαl in limiting skeletal muscle cell hypertrophy. FASEB Journal, 2009, 23, 2264-2273.	0.5	106
139	AMPâ€activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiologica, 2009, 196, 81-98.	3.8	401
140	Intestinal Gluconeogenesis Is a Key Factor for Early Metabolic Changes after Gastric Bypass but Not after Gastric Lap-Band in Mice. Cell Metabolism, 2008, 8, 201-211.	16.2	270
141	Understanding the Molecular Basis of the Interaction between NDPK-A and AMPK $\hat{l}\pm 1$. Molecular and Cellular Biology, 2008, 28, 5827-5827.	2.3	0
142	AMP-activated Protein Kinase Inhibits Transforming Growth Factor-Î ² -induced Smad3-dependent Transcription and Myofibroblast Transdifferentiation. Journal of Biological Chemistry, 2008, 283, 10461-10469.	3.4	115
143	Mechanism of Action of A-769662, a Valuable Tool for Activation of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2007, 282, 32549-32560.	3.4	376
144	A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. American Journal of Physiology - Renal Physiology, 2007, 292, F617-F627.	2.7	253

#	Article	IF	CITATIONS
145	Activation of 5′-AMP-activated Kinase with Diabetes Drug Metformin Induces Casein Kinase Iɛ (CKIɛ)-dependent Degradation of Clock Protein mPer2. Journal of Biological Chemistry, 2007, 282, 20794-20798.	3.4	212
146	AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochemical Journal, 2007, 404, 499-507.	3.7	100
147	Haptoglobin is degraded by iron in C57BL/6 mice: A possible link with endoplasmic reticulum stress. Blood Cells, Molecules, and Diseases, 2007, 39, 229-237.	1.4	13
148	S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase. Cell Metabolism, 2007, 5, 476-487.	16.2	163
149	Targeting AMP-activated protein kinase asÂaÂnovel therapeutic approach forÂtheÂtreatment ofÂmetabolic disorders. Diabetes and Metabolism, 2007, 33, 395-402.	2.9	156
150	Evidence From Glut2-Null Mice That Glucose Is a Critical Physiological Regulator of Feeding. Diabetes, 2006, 55, 988-995.	0.6	117
151	Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. Journal of Physiology, 2006, 574, 41-53.	2.9	457
152	Expression of Uncoupling Protein 3 and GLUT4 Gene in Skeletal Muscle of Preterm Newborns: Possible Control by AMP-Activated Protein Kinase. Pediatric Research, 2006, 60, 569-575.	2.3	10
153	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	2.8	73
154	Liver Adenosine Monophosphate-Activated Kinase-α2 Catalytic Subunit Is a Key Target for the Control of Hepatic Glucose Production by Adiponectin and Leptin But Not Insulin. Endocrinology, 2006, 147, 2432-2441.	2.8	216
155	Understanding the Molecular Basis of the Interaction between NDPK-A and AMPK $\hat{l}\pm 1$. Molecular and Cellular Biology, 2006, 26, 5921-5931.	2.3	12
156	5′-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments. Molecular and Cellular Biology, 2006, 26, 5336-5347.	2.3	395
157	Stimulation of AMP-Activated Protein Kinase Is Essential for the Induction of Drug Metabolizing Enzymes by Phenobarbital in Human and Mouse Liver. Molecular Pharmacology, 2006, 70, 1925-1934.	2.3	84
158	5-Aminoimidazole-4-Carboxamide-1-Â-D-Ribofuranoside and Metformin Inhibit Hepatic Glucose Phosphorylation by an AMP-Activated Protein Kinase-Independent Effect on Glucokinase Translocation. Diabetes, 2006, 55, 865-874.	0.6	171
159	Short-Term Overexpression of a Constitutively Active Form of AMP-Activated Protein Kinase in the Liver Leads to Mild Hypoglycemia and Fatty Liver. Diabetes, 2005, 54, 1331-1339.	0.6	346
160	Regulation of glucagon secretion by glucose transporter type 2 (glut2) and astrocyte-dependent glucose sensors. Journal of Clinical Investigation, 2005, 115, 3545-3553.	8.2	203
161	Impaired Glucose Homeostasis in Mice Lacking the $\hat{l}\pm 1b$ -Adrenergic Receptor Subtype. Journal of Biological Chemistry, 2004, 279, 1108-1115.	3.4	43
162	The facilitative glucose transporter 2: pathophysiological role in mouse and human., 2003,, 175-190.		4

#	Article	lF	CITATION
163	Sterol-regulatory-element-binding protein I c mediates insulin action on hepatic gene expression. Biochemical Society Transactions, 2001, 29, 547-552.	3.4	27
164	Sterol Regulatory Element-binding Protein-1c Mimics the Negative Effect of Insulin on Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription. Journal of Biological Chemistry, 2001, 276, 34816-34823.	3.4	85
165	Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochemical Journal, 2000, 350, 389.	3.7	67
166	Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes. Biochemical Journal, 2000, 350, 389-393.	3.7	236
167	Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase. Molecular and Cellular Biology, 2000, 20, 6704-6711.	2.3	376
168	Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12737-12742.	7.1	641
169	The inhibitory effect of glucose on phosphoenolpyruvate carboxykinase gene expression in cultured hepatocytes is transcriptional and requires glucose metabolism. FEBS Letters, 1999, 460, 527-532.	2.8	31
170	Polyunsaturated fatty acids inhibit fatty acid synthase and spot-14-protein gene expression in cultured rat hepatocytes by a peroxidative mechanism. Biochemical Journal, 1999, 341, 371-376.	3.7	32
171	Polyunsaturated fatty acids inhibit fatty acid synthase and spot-14-protein gene expression in cultured rat hepatocytes by a peroxidative mechanism. Biochemical Journal, 1999, 341, 371.	3.7	16
172	ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose. Molecular and Cellular Biology, 1999, 19, 3760-3768.	2.3	491
173	AMP-activated Protein Kinase Inhibits the Glucose-activated Expression of Fatty Acid Synthase Gene in Rat Hepatocytes. Journal of Biological Chemistry, 1998, 273, 14767-14771.	3.4	217
174	Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations. Biochemical 1997, 326, 345-349	3.7	80