Jörg König

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964957/publications.pdf

Version: 2024-02-01

99 papers 10,153 citations

51 h-index 96 g-index

104 all docs

104 docs citations

104 times ranked 6713 citing authors

#	Article	IF	Citations
1	Role of Uptake Transporters OAT4, OATP2A1, and OATP1A2 in Human Placental Bio-disposition of Pravastatin. Journal of Pharmaceutical Sciences, 2022, 111, 505-516.	3.3	3
2	Zebrafish Oatp $1d1$ Acts as a Cellular Efflux Transporter of the Anionic Herbicide Bromoxynil. Chemical Research in Toxicology, 2022, , .	3.3	О
3	Screening of commonly prescribed drugs for effects on the CAT1-mediated transport of l-arginine and arginine derivatives. Amino Acids, 2022, 54, 1101-1108.	2.7	2
4	L-Arginine and Cardioactive Arginine Derivatives as Substrates and Inhibitors of Human and Mouse NaCT/Nact. Metabolites, 2022, 12, 273.	2.9	2
5	Carbamazepine efficacy in a severe electroâ€elinical presentation of <scp><i>SLC13A5</i></scp> â€epilepsy. Annals of Clinical and Translational Neurology, 2022, 9, 1095-1099.	3.7	3
6	Exposure of Fexofenadine, but Not Pseudoephedrine, Is Markedly Decreased by Green Tea Extract in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2022, 112, 627-634.	4.7	4
7	Interaction of Remdesivir with Clinically Relevant Hepatic Drug Uptake Transporters. Pharmaceutics, 2021, 13, 369.	4.5	14
8	Transport of Drugs and Endogenous Compounds Mediated by Human OCT1: Studies in Single- and Double-Transfected Cell Models. Frontiers in Pharmacology, 2021, 12, 662535.	3.5	11
9	Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Communications Biology, 2021, 4, 826.	4.4	6
10	Transport of L-Arginine Related Cardiovascular Risk Markers. Journal of Clinical Medicine, 2020, 9, 3975.	2.4	21
11	Vectorial transport of the arginine derivatives asymmetric dimethylarginine (ADMA) and l-homoarginine by OATP4C1 and P-glycoprotein studied in double-transfected MDCK cells. Amino Acids, 2020, 52, 975-985.	2.7	5
12	Interplay of the Organic Cation Transporters OCT1 and OCT2 with the Apically Localized Export Protein MATE1 for the Polarized Transport of Trospium. Molecular Pharmaceutics, 2019, 16, 510-517.	4.6	14
13	The renal transport protein OATP4C1 mediates uptake of the uremic toxin asymmetric dimethylarginine (ADMA) and efflux of cardioprotective L-homoarginine. PLoS ONE, 2019, 14, e0213747.	2.5	17
14	Clinical Aspects of Transporterâ€Mediated Drug–Drug Interactions. Clinical Pharmacology and Therapeutics, 2019, 105, 1386-1394.	4.7	88
15	Biomarkers for In Vivo Assessment of Transporter Function. Pharmacological Reviews, 2018, 70, 246-277.	16.0	59
16	Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Scientific Reports, 2018, 8, 11330.	3.3	24
17	Importance of OCT2 and MATE1 for the Cimetidine–Metformin Interaction: Insights from Investigations of Polarized Transport in Single- And Double-Transfected MDCK Cells with a Focus on Perpetrator Disposition. Molecular Pharmaceutics, 2018, 15, 3425-3433.	4.6	23
18	The human longevity gene homolog INDY and interleukinâ€6 interact in hepatic lipid metabolism. Hepatology, 2017, 66, 616-630.	7.3	55

#	Article	IF	CITATIONS
19	Contribution of MATE1 to Renal Secretion of the NMDA Receptor Antagonist Memantine. Molecular Pharmaceutics, 2017, 14, 2991-2998.	4.6	22
20	The prognostic biomarker L-homoarginine is a substrate of the cationic amino acid transporters CAT1, CAT2A and CAT2B. Scientific Reports, 2017, 7, 4767.	3.3	27
21	Tropane alkaloids as substrates and inhibitors of human organic cation transporters of the SLC22 (OCT) and the SLC47 (MATE) families. Biological Chemistry, 2017, 398, 237-249.	2.5	28
22	Assays for Analyzing the Role of Transport Proteins in the Uptake and the Vectorial Transport of Substances Affecting Cell Viability. Methods in Molecular Biology, 2017, 1601, 123-135.	0.9	5
23	Analysis of amino acid residues in the predicted transmembrane pore influencing transport kinetics of the hepatic drug transporter organic anion transporting polypeptide 1B1 (OATP1B1). Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2894-2902.	2.6	4
24	The Nonmetabolized \hat{I}^2 -Blocker Nadolol Is a Substrate of OCT1, OCT2, MATE1, MATE2-K, and P-Glycoprotein, but Not of OATP1B1 and OATP1B3. Molecular Pharmaceutics, 2016, 13, 512-519.	4.6	33
25	Esters of Bendamustine Are by Far More Potent Cytotoxic Agents than the Parent Compound against Human Sarcoma and Carcinoma Cells. PLoS ONE, 2015, 10, e0133743.	2.5	12
26	Inhibitory Effects of Green Tea and ($\hat{a}\in$ ")-Epigallocatechin Gallate on Transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-Glycoprotein. PLoS ONE, 2015, 10, e0139370.	2.5	64
27	Alanine-glyoxylate aminotransferase 2 (AGXT2) Polymorphisms Have Considerable Impact on Methylarginine and β-aminoisobutyrate Metabolism in Healthy Volunteers. PLoS ONE, 2014, 9, e88544.	2.5	33
28	Genome-Wide Association Study of <scp>l</scp> -Arginine and Dimethylarginines Reveals Novel Metabolic Pathway for Symmetric Dimethylarginine. Circulation: Cardiovascular Genetics, 2014, 7, 864-872.	5.1	53
29	Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochemical Pharmacology, 2013, 86, 808-815.	4.4	85
30	Transporters and Drug-Drug Interactions: Important Determinants of Drug Disposition and Effects. Pharmacological Reviews, 2013, 65, 944-966.	16.0	475
31	Transport of asymmetric dimethylarginine (ADMA) by cationic amino acid transporter 2 (CAT2), organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1). Amino Acids, 2013, 45, 989-1002.	2.7	41
32	In vivo evidence that Agxt2 can regulate plasma levels of dimethylarginines in mice. Biochemical and Biophysical Research Communications, 2013, 430, 84-89.	2.1	36
33	The Influence of Oral Antidiabetic Drugs on Cellular Drug Uptake Mediated by Hepatic <scp>OATP</scp> Family Members. Basic and Clinical Pharmacology and Toxicology, 2013, 112, 244-250.	2.5	23
34	Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). Journal of Molecular and Cellular Cardiology, 2012, 53, 392-400.	1.9	52
35	Characterization of Ursodeoxycholic and Norursodeoxycholic Acid as Substrates of the Hepatic Uptake Transporters <scp>OATP</scp> 1B1, <scp>OATP</scp> 1B3, <scp>OATP</scp> 2B1 and <scp>NTCP</scp> . Basic and Clinical Pharmacology and Toxicology, 2012, 111, 81-86.	2.5	24
36	Deletion of the Mammalian INDY Homolog Mimics Aspects of Dietary Restriction and Protects against Adiposity and Insulin Resistance in Mice. Cell Metabolism, 2011, 14, 184-195.	16.2	193

#	Article	IF	Citations
37	Deletion of the Mammalian INDY Homolog Mimics Aspects of Dietary Restriction and Protects against Adiposity and Insulin Resistance in Mice. Cell Metabolism, 2011, 14, 567.	16.2	4
38	Uptake Transporters of the Human OATP Family. Handbook of Experimental Pharmacology, 2011, , 1-28.	1.8	107
39	Transporter-Mediated Drug–Drug Interactions with Oral Antidiabetic Drugs. Pharmaceutics, 2011, 3, 680-705.	4.5	29
40	The Role of ABCC Family Members in the Disposition of Endogenous Compounds and Drugs. , 2011 , , $209-245$.		0
41	Expression and localization of the uptake transporters OATP2B1, OATP3A1 and OATP5A1 in non-malignant and malignant breast tissue. Cancer Biology and Therapy, 2011, 11, 584-591.	3.4	54
42	Molecular Mechanism of Renal Tubular Secretion of the Antimalarial Drug Chloroquine. Antimicrobial Agents and Chemotherapy, 2011, 55, 3091-3098.	3.2	64
43	Influence of Non-Steroidal Anti-Inflammatory Drugs on Organic Anion Transporting Polypeptide (OATP) 1B1- and OATP1B3-Mediated Drug Transport. Drug Metabolism and Disposition, 2011, 39, 1047-1053.	3.3	94
44	Role of Organic Anion-Transporting Polypeptides for Cellular Mesalazine (5-Aminosalicylic Acid) Uptake. Drug Metabolism and Disposition, 2011, 39, 1097-1102.	3.3	40
45	Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1. Biochemical Pharmacology, 2010, 80, 1746-1753.	4.4	121
46	The Prostaglandin Transporter OATP2A1 Is Expressed in Human Ocular Tissues and Transports the Antiglaucoma Prostanoid Latanoprost., 2010, 51, 2504.		48
47	Gender Is an Important Determinant of the Disposition of the Loop Diuretic Torasemide. Journal of Clinical Pharmacology, 2010, 50, 160-168.	2.0	49
48	<i>SLCO1B1</i> genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics, 2010, 11, 1703-1713.	1.3	48
49	Hepatic OATP and OCT uptake transporters: their role for drug-drug interactions and pharmacogenetic aspects. Drug Metabolism Reviews, 2010, 42, 380-401.	3.6	93
50	Functional Characterization of the Human Organic Cation Transporter 2 Variant p.270Ala>Ser. Drug Metabolism and Disposition, 2009, 37, 1312-1318.	3.3	80
51	Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 379, 337-348.	3.0	101
52	<i>In vitro</i> evidence for the role of OATP and OCT uptake transporters in drug–drug interactions. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 489-500.	3.3	71
53	Non-synonymous polymorphisms in the human SLCO1B1 gene: an in vitro analysis of SNPÂc.1929A>C. Molecular Genetics and Genomics, 2008, 279, 149-157.	2.1	9
54	Interaction of Oral Antidiabetic Drugs With Hepatic Uptake Transporters. Diabetes, 2008, 57, 1463-1469.	0.6	111

#	Article	IF	Citations
55	The functional consequences of genetic variations in transporter genes encoding human organic anion-transporting polypeptide family members. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 51-64.	3.3	44
56	Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenetics and Genomics, 2008, 18, 559-568.	1.5	87
57	The Influence of Macrolide Antibiotics on the Uptake of Organic Anions and Drugs Mediated by OATP1B1 and OATP1B3. Drug Metabolism and Disposition, 2007, 35, 779-786.	3.3	175
58	Functional analysis of the polymorphism \hat{a}^211C T in the regulatory region of the human ABCC3 gene. Life Sciences, 2007, 80, 1490-1494.	4.3	27
59	Role of P-Glycoprotein Inhibition forÂDrug Interactions. Clinical Pharmacokinetics, 2007, 46, 1039-1049.	3.5	101
60	Impact of the CYP3A5 genotype on midazolam pharmacokinetics and pharmacodynamics during intensive care sedation. European Journal of Clinical Pharmacology, 2007, 63, 1129-1133.	1.9	13
61	Pharmacogenomics of human OATP transporters. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 372, 432-443.	3.0	308
62	ATP-Binding Cassette Transporters in the Heart. Trends in Cardiovascular Medicine, 2006, 16, 7-15.	4.9	44
63	Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. International Journal of Cancer, 2005, 115, 359-367.	5.1	165
64	Human Hepatobiliary Transport of Organic Anions Analyzed by Quadruple-Transfected Cells. Molecular Pharmacology, 2005, 68, 1031-1038.	2.3	193
65	ABCC Drug Efflux Pumps and Organic Anion Uptake Transporters in Human Gliomas and the Blood-Tumor Barrier. Cancer Research, 2005, 65, 11419-11428.	0.9	266
66	Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics and Genomics, 2004, 14, 441-452.	5.7	170
67	Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics and Genomics, 2004, 14, 213-223.	5.7	84
68	Transport of Bilirubin Conjugates across Hepatocellular Membrane Domains and the Conjugated Hyperbilirubinemia of Dubin-Johnson Syndrome., 2004,, 195-210.		0
69	Detection of the Human Organic Anion Transporters SLC21A6 (OATP2) and SLC21A8 (OATP8) in Liver and Hepatocellular Carcinoma. Laboratory Investigation, 2003, 83, 527-538.	3.7	105
70	Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. Journal of Hepatology, 2003, 39, 693-702.	3.7	149
71	MRP2, THE APICAL EXPORT PUMP FOR ANIONIC CONJUGATES. , 2003, , 423-443.		29
72	Reconstitution of Transport-Active Multidrug Resistance Protein 2 (MRP2; ABCC2) in Proteoliposomes. Biological Chemistry, 2002, 383, 1001-9.	2.5	13

#	Article	IF	CITATIONS
73	A Naturally Occurring Mutation in the SLC21A6Gene Causing Impaired Membrane Localization of the Hepatocyte Uptake Transporter. Journal of Biological Chemistry, 2002, 277, 43058-43063.	3.4	127
74	The human hepatocyte-specific organic anion transporter encoded by the SLC21A8 gene. Gastroenterology, 2002, 122, 1545-1546.	1.3	2
75	Expression of mRNAs of multidrug resistance proteins (Mrps) in cultured rat astrocytes, oligodendrocytes, microglial cells and neurones. Journal of Neurochemistry, 2002, 82, 716-719.	3.9	120
76	Structural requirements for the apical sorting of human multidrug resistance protein 2 (ABCC2). FEBS Journal, 2002, 269, 1866-1876.	0.2	64
77	Expression and localization of the multidrug resistance proteins MRP2 and MRP3 in human gallbladder epithelia. Gastroenterology, 2001, 121, 1203-1208.	1.3	99
78	Vectorial Transport by Double-Transfected Cells Expressing the Human Uptake Transporter SLC21A8 and the Apical Export Pump ABCC2. Molecular Pharmacology, 2001, 60, 934-943.	2.3	209
79	The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. Journal of Neurochemistry, 2001, 76, 627-636.	3.9	153
80	Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. International Journal of Cancer, 2001, 94, 492-499.	5.1	163
81	Hepatic Uptake of Bilirubin and Its Conjugates by the Human Organic Anion Transporter SLC21A6. Journal of Biological Chemistry, 2001, 276, 9626-9630.	3.4	458
82	Characterization of the 5′-flanking region of the human multidrug resistance protein 2 (MRP2) gene and its regulation in comparison withthe multidrug resistance protein 3 (MRP3) gene. FEBS Journal, 2000, 267, 1347-1358.	0.2	87
83	A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. American Journal of Physiology - Renal Physiology, 2000, 278, G156-G164.	3.4	479
84	Hepatic Secretion of Conjugated Drugs and Endogenous Substances. Seminars in Liver Disease, 2000, Volume 20, 265-272.	3.6	224
85	Localization and Genomic Organization of a New Hepatocellular Organic Anion Transporting Polypeptide. Journal of Biological Chemistry, 2000, 275, 23161-23168.	3.4	462
86	Localization, substrate specificity, and drug resistance conferred by conjugate export pumps of the MRP family. Advances in Enzyme Regulation, 2000, 40, 339-349.	2.6	71
87	Purification of the human apical conjugate export pump MRP2. Reconstitution and functional characterization as substrate-stimulated ATPase. FEBS Journal, 1999, 265, 281-289.	0.2	39
88	Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology, 1999, 29, 1156-1163.	7.3	430
89	Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology, 1999, 30, 485-490.	7.3	151
90	Export pumps for anionic conjugates encoded by MRP genes. Advances in Enzyme Regulation, 1999, 39, 237-246.	2.6	86

#	Article	IF	Citations
91	Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 377-394.	2.6	681
92	Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin–Johnson syndrome. Gastroenterology, 1999, 117, 653-660.	1.3	148
93	Expression of the MRP2 Gene-Encoded Conjugate Export Pump in Human Kidney Proximal Tubules and in Renal Cell Carcinoma. Journal of the American Society of Nephrology: JASN, 1999, 10, 1159-1169.	6.1	224
94	Molecular analysis of regulation of gene expression of the human erythroid anion exchanger (AE) 1. FEBS Letters, 1998, 438, 315-320.	2.8	4
95	Human Mast Cells Secreting Leukotriene C4 Express the MRP1 Gene-Encoded Conjugate Export Pump. Biological Chemistry, 1998, 379, 1121-6.	2.5	25
96	The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Advances in Enzyme Regulation, 1997, 37, 321-333.	2.6	82
97	Expression and localization of the conjugate export pump encoded by the <i>MRP2 (cMRP/cMOAJ)</i> gene in liver. FASEB Journal, 1997, 11, 509-515.	0.5	265
98	cDNA Cloning of the Hepatocyte Canalicular Isoform of the Multidrug Resistance Protein, cMrp, Reveals a Novel Conjugate Export Pump Deficient in Hyperbilirubinemic Mutant Rats. Journal of Biological Chemistry, 1996, 271, 15091-15098.	3.4	580
99	Inhibition of Mouse Erythroid Band 3-Mediated Chloride Transport by Site-Directed Mutagenesis of Histidine Residues and Its Reversal by Second Site Mutation of Lys 558, the Locus of Covalent H2DIDS Binding. Biochemistry, 1995, 34, 9315-9324.	2.5	52