Biaobang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9647446/publications.pdf

Version: 2024-02-01

20 papers

1,155 citations

567281 15 h-index 752698 20 g-index

20 all docs 20 docs citations

20 times ranked 828 citing authors

#	Article	IF	CITATIONS
1	Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest. American Journal of Human Genetics, 2016, 99, 744-752.	6.2	160
2	Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility. American Journal of Human Genetics, 2018, 102, 649-657.	6.2	129
3	Biallelic Mutations in PATL2 Cause Female Infertility Characterized by Oocyte Maturation Arrest. American Journal of Human Genetics, 2017, 101, 609-615.	6.2	108
4	Mutations in <i>TUBB8 </i> i>cause a multiplicity of phenotypes in human oocytes and early embryos. Journal of Medical Genetics, 2016, 53, 662-671.	3.2	91
5	Novel mutations and structural deletions in <i>TUBB8</i> : expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Human Reproduction, 2017, 32, 457-464.	0.9	88
6	Mutations in <i>NLRP2</i> and <i>NLRP5</i> cause female infertility characterised by early embryonic arrest. Journal of Medical Genetics, 2019, 56, 471-480.	3.2	87
7	Novel mutations in genes encoding subcortical maternal complex proteins may cause human embryonic developmental arrest. Reproductive BioMedicine Online, 2018, 36, 698-704.	2.4	73
8	A pannexin 1 channelopathy causes human oocyte death. Science Translational Medicine, 2019, 11, .	12.4	73
9	Novel mutations in ZP1, ZP2, and ZP3 cause female infertility due to abnormal zona pellucida formation. Human Genetics, 2019, 138, 327-337.	3.8	70
10	The comprehensive mutational and phenotypic spectrum of TUBB8 in female infertility. European Journal of Human Genetics, 2019, 27, 300-307.	2.8	63
11	Homozygous mutations in <i>REC114</i> cause female infertility characterised by multiple pronuclei formation and early embryonic arrest. Journal of Medical Genetics, 2020, 57, 187-194.	3.2	39
12	Novel mutations in PATL2: expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. Journal of Human Genetics, 2019, 64, 379-385.	2.3	35
13	Expanding the genetic and phenotypic spectrum of female infertility caused by TLE6 mutations. Journal of Assisted Reproduction and Genetics, 2020, 37, 437-442.	2.5	35
14	The identification of novel mutations in PLCZ1 responsible for human fertilization failure and a therapeutic intervention by artificial oocyte activation. Molecular Human Reproduction, 2020, 26, 80-87.	2.8	28
15	Novel mutations in <i>WEE2</i> : Expanding the spectrum of mutations responsible for human fertilization failure. Clinical Genetics, 2019, 95, 520-524.	2.0	27
16	Homozygous variants in PANX1 cause human oocyte death and female infertility. European Journal of Human Genetics, 2021, 29, 1396-1404.	2.8	13
17	Pregnancy and Live Birth In Women With Pathogenic LHCGR Variants Using Their Own Oocytes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5877-5892.	3.6	12
18	A novel homozygous variant in ZP2 causes abnormal zona pellucida formation and female infertility. Journal of Assisted Reproduction and Genetics, 2021, 38, 1239-1245.	2.5	11

#	Article	IF	CITATIONS
19	Bi-allelic variants in <i>KCNU1</i> cause impaired acrosome reactions and male infertility. Human Reproduction, 2022, 37, 1394-1405.	0.9	8
20	A homozygous mutation in CMAS causes autosomal recessive intellectual disability in a Kazakh family. Annals of Human Genetics, 2020, 84, 46-53.	0.8	5