Surajit Bhattacharjya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking dual mode of action of host defense antimicrobial peptide thanatin: Structures, lipopolysaccharide and LptAm binding of designed analogs. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183839.	2.6	10
2	NMR Structure and Localization of the Host Defense Peptide ThanatinM21F in Zwitterionic Dodecylphosphocholine Micelle: Implications in Antimicrobial and Hemolytic Activity. Journal of Membrane Biology, 2022, 255, 151-160.	2.1	3
3	Atomic-Resolution Structures and Mode of Action of Clinically Relevant Antimicrobial Peptides. International Journal of Molecular Sciences, 2022, 23, 4558.	4.1	11
4	Thanatin: An Emerging Host Defense Antimicrobial Peptide with Multiple Modes of Action. International Journal of Molecular Sciences, 2021, 22, 1522.	4.1	48
5	Enhanced Cholesterol-Dependent Hemifusion by Internal Fusion Peptide 1 of SARS Coronavirus-2 Compared to Its N-Terminal Counterpart. Biochemistry, 2021, 60, 559-562.	2.5	20
6	Binary and ternary complexes of FLNa-Ig21 with cytosolic tails of αMß2 integrin reveal dual role of filamin mediated regulation. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 130005.	2.4	2
7	<i>De Novo</i> -Designed β-Sheet Heme Proteins. Biochemistry, 2021, 60, 431-439.	2.5	12
8	Salt Dependence Conformational Stability of the Dimeric SAM Domain of MAPKKK Ste11 from Budding Yeast: A Native-State H/D Exchange NMR Study. Biochemistry, 2020, 59, 2849-2858.	2.5	3
9	Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Biophysical Chemistry, 2020, 265, 106438.	2.8	35
10	NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle: Implications in antimicrobial activity. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183432.	2.6	13
11	Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. International Journal of Molecular Sciences, 2020, 21, 5773.	4.1	47
12	Membrane Cholesterol Modulates Oligomeric Status and Peptide-Membrane Interaction of Severe Acute Respiratory Syndrome Coronavirus Fusion Peptide. Journal of Physical Chemistry B, 2019, 123, 10654-10662.	2.6	101
13	NMR Structure, Dynamics and Interactions of the Integrin β2 Cytoplasmic Tail with Filamin Domain IgFLNa21. Scientific Reports, 2018, 8, 5490.	3.3	6
14	NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 407-415.	2.6	19
15	Cell-Selective Pore Forming Antimicrobial Peptides of the Prodomain of Human Furin: A Conserved Aromatic/Cationic Sequence Mapping, Membrane Disruption, and Atomic-Resolution Structure and Dynamics. ACS Omega, 2018, 3, 14650-14664.	3.5	10
16	Expanding heme-protein folding space using designed multi-heme β-sheet mini-proteins. Communications Chemistry, 2018, 1, .	4.5	12
17	Interaction Analyses of 14-3-3ζ, Dok1, and Phosphorylated Integrin β Cytoplasmic Tails Reveal a Bi-molecular Switch in Integrin Regulation. Journal of Molecular Biology, 2018, 430, 4419-4430.	4.2	9
18	Lipopolysaccharide-affinity copolymer senses the rapid motility of swarmer bacteria to trigger antimicrobial drug release. Nature Communications, 2018, 9, 4277.	12.8	17

SURAJIT BHATTACHARJYA

#	Article	IF	CITATIONS
19	Designed Heme age βâ€Sheet Miniproteins. Angewandte Chemie - International Edition, 2017, 56, 5904-5908	.13.8	23
20	Designed Heme age βâ€\$heet Miniproteins. Angewandte Chemie, 2017, 129, 5998-6002.	2.0	9
21	Piscidin-1-analogs with double L- and D-lysine residues exhibited different conformations in lipopolysaccharide but comparable anti-endotoxin activities. Scientific Reports, 2017, 7, 39925.	3.3	21
22	Structure and Interactions of AÂHost Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Scientific Reports, 2017, 7, 17795.	3.3	81
23	Pseudomonas aeruginosa Psl Exopolysaccharide Interacts with the Antimicrobial Peptide LG21. Water (Switzerland), 2017, 9, 681.	2.7	4
24	Saltâ€resistant short antimicrobial peptides. Biopolymers, 2016, 106, 345-356.	2.4	33
25	†Lollipop'-shaped helical structure of a hybrid antimicrobial peptide of temporin B-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1362-1372.	2.4	20
26	Designed multi-stranded heme binding β-sheet peptides in membrane. Chemical Science, 2016, 7, 2563-2571.	7.4	21
27	Interaction Analyses of the Integrin β2 Cytoplasmic Tail with the F3 FERM Domain of Talin and 14-3-3ζ Reveal a Ternary Complex with Phosphorylated Tail. Journal of Molecular Biology, 2016, 428, 4129-4142.	4.2	15
28	An Alternative Phosphorylation Switch in Integrin β2 (CD18) Tail for Dok1 Binding. Scientific Reports, 2015, 5, 11630.	3.3	15
29	NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Current Topics in Medicinal Chemistry, 2015, 16, 4-15.	2.1	30
30	NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 721-730.	2.6	36
31	NMR Characterization of the Near Native and Unfolded States of the PTB Domain of Dok1: Alternate Conformations and Residual Clusters. PLoS ONE, 2014, 9, e90557.	2.5	7
32	β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure. Pharmaceuticals, 2014, 7, 482-501.	3.8	20
33	Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, saltâ€resistance, and biocompatibility. Biotechnology and Bioengineering, 2014, 111, 37-49.	3.3	84
34	Resurrecting Inactive Antimicrobial Peptides from the Lipopolysaccharide Trap. Antimicrobial Agents and Chemotherapy, 2014, 58, 1987-1996.	3.2	71
35	Peptide–perylene diimide functionalized magnetic nano-platforms for fluorescence turn-on detection and clearance of bacterial lipopolysaccharides. Chemical Communications, 2014, 50, 6200-6203.	4.1	52
36	Cysteine deleted protegrin-1 (CDP-1): Anti-bacterial activity, outer-membrane disruption and selectivity. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3006-3016.	2.4	27

SURAJIT BHATTACHARJYA

#	Article	IF	CITATIONS
37	Designed Diâ€Heme Binding Helical Transmembrane Protein. ChemBioChem, 2014, 15, 1257-1262.	2.6	17
38	Characterization of the near native conformational states of the SAM domain of Ste11 protein by NMR spectroscopy. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2957-2969.	2.6	1
39	βâ€Hairpin Peptides: Heme Binding, Catalysis, and Structure in Detergent Micelles. Angewandte Chemie, 2013, 125, 6558-6562.	2.0	12
40	βâ€Hairpin Peptides: Heme Binding, Catalysis, and Structure in Detergent Micelles. Angewandte Chemie - International Edition, 2013, 52, 6430-6434.	13.8	30
41	NMR Structure of Temporin-1 Ta in Lipopolysaccharide Micelles: Mechanistic Insight into Inactivation by Outer Membrane. PLoS ONE, 2013, 8, e72718.	2.5	31
42	Structural determinants of the specificity of a membrane binding domain of the scaffold protein Ste5 of budding yeast: Implications in signaling by the scaffold protein in MAPK pathway. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1250-1260.	2.6	8
43	Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1613-1624.	2.6	53
44	Structure and Binding Interface of the Cytosolic Tails of $\hat{1}\pm X\hat{1}^22$ Integrin. PLoS ONE, 2012, 7, e41924.	2.5	12
45	Applications of saturation transfer difference NMR in biological systems. Drug Discovery Today, 2012, 17, 505-513.	6.4	126
46	Oligomeric structure of a cathelicidin antimicrobial peptide in dodecylphosphocholine micelle determined by NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 369-381.	2.6	38
47	Mapping residue-specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: Insights into outer-membrane disruption and endotoxin neutralization. Biopolymers, 2011, 96, 273-287.	2.4	29
48	Structures and Interaction Analyses of Integrin αMβ2 Cytoplasmic Tails*. Journal of Biological Chemistry, 2011, 286, 43842-43854.	3.4	18
49	NMR Structures and Interactions of Temporin-1Tl and Temporin-1Tb with Lipopolysaccharide Micelles. Journal of Biological Chemistry, 2011, 286, 24394-24406.	3.4	84
50	NMR Structure of Pardaxin, a Pore-forming Antimicrobial Peptide, in Lipopolysaccharide Micelles. Journal of Biological Chemistry, 2010, 285, 3883-3895.	3.4	123
51	Structure, Interactions, and Antibacterial Activities of MSI-594 Derived Mutant Peptide MSI-594F5A in Lipopolysaccharide Micelles: Role of the Helical Hairpin Conformation in Outer-Membrane Permeabilization. Journal of the American Chemical Society, 2010, 132, 18417-18428.	13.7	104
52	Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: Implications in cell selective lysis by d-amino acid containing antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 128-139.	2.6	31
53	Functional and structural characterization of the talin FOF1 domain. Biochemical and Biophysical Research Communications, 2010, 391, 159-165.	2.1	3
54	Designed Î ² -Boomerang Antiendotoxic and Antimicrobial Peptides. Journal of Biological Chemistry, 2009, 284, 21991-22004.	3.4	94

#	Article	IF	CITATIONS
55	Helical Hairpin Structure of a Potent Antimicrobial Peptide MSIâ€594 in Lipopolysaccharide Micelles by NMR Spectroscopy. Chemistry - A European Journal, 2009, 15, 2036-2040.	3.3	89
56	Lipopolysaccharide bound structures of the active fragments of fowlicidinâ€1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear overhauser effect spectroscopy. Biopolymers, 2009, 92, 9-22.	2.4	56
57	NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Proteins: Structure, Function and Bioinformatics, 2009, 74, 328-343.	2.6	24
58	Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS Journal, 2009, 276, 6465-6473.	4.7	88
59	Interactions of a designed peptide with lipopolysaccharide: Bound conformation and anti-endotoxic activity. Biochemical and Biophysical Research Communications, 2008, 369, 853-857.	2.1	22
60	Equilibrium Unfolding of the Dimeric SAM Domain of MAPKKK Ste11 from the Budding Yeast:  Role of the Interfacial Residues in Structural Stability and Binding. Biochemistry, 2008, 47, 651-659.	2.5	8
61	Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 3282-3291.	2.6	58
62	High-Resolution Solution Structure of a Designed Peptide Bound to Lipopolysaccharide:  Transferred Nuclear Overhauser Effects, Micelle Selectivity, and Anti-Endotoxic Activity,. Biochemistry, 2007, 46, 5864-5874.	2.5	49
63	Conformational analyses of a partially-folded bioactive prodomain of human furin. Biopolymers, 2007, 86, 329-344.	2.4	10
64	An NMR-based identification of a peptide fragment from the β-subunit of a G-protein showing specific interactions with the GBB domain of the Ste20 kinase in budding yeast. Biochemical and Biophysical Research Communications, 2006, 347, 1145-1150.	2.1	6
65	Polymerization of the SAM domain of MAPKKK Ste11 from the budding yeast: Implications for efficient signaling through the MAPK cascades. Protein Science, 2005, 14, 828-835.	7.6	22
66	Solution Structure of the Dimeric SAM Domain of MAPKKK Ste11 and its Interactions with the Adaptor Protein Ste50 from the Budding Yeast: Implications for Ste11 Activation and Signal Transmission Through the Ste50–Ste11 Complex. Journal of Molecular Biology, 2004, 344, 1071-1087.	4.2	36
67	pH-induced conformational transitions of a molten-globule-like state of the inhibitory prodomain of furin: Implications for zymogen activation. Protein Science, 2001, 10, 934-942.	7.6	26
68	Sequence-specific 1H, 15N and 13C resonance assignments of the inhibitory prodomain of human furin. Journal of Biomolecular NMR, 2000, 16, 275-276.	2.8	4
69	Inhibitory Activity and Structural Characterization of a C-Terminal Peptide Fragment Derived from the Prosegment of the Proprotein Convertase PC7â€. Biochemistry, 2000, 39, 2868-2877.	2.5	27
70	Solid state and solution conformations of a helical peptide with a central gly-gly segment. , 1998, 38, 515-526.		26
71	Folded conformations of antigenic peptides from riboflavin carrier protein in aqueous hexafluoroacetone. Protein Science, 1998, 7, 123-131.	7.6	6
72	Ϊ‰-Amino Acids in Peptide Design. Crystal Structures and Solution Conformations of Peptide Helices Containing a β-Alanyl-Ĩ³-Aminobutyryl Segment. Journal of the American Chemical Society, 1997, 119, 9087-9095.	13.7	120

#	Article	IF	CITATIONS
73	Hexafluoroacetone hydrate as a structure modifier in proteins: Characterization of a molten globule state of hen eggâ€white lysozyme. Protein Science, 1997, 6, 1065-1073.	7.6	36
74	Effects of organic solvents on protein structures: Observation of a structured helical core in hen egg-white lysozyme in aqueous dimethylsulfoxide. , 1997, 29, 492-507.		100
75	Polymyxin B nonapeptide: Conformations in water and in the lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics. Biopolymers, 1997, 41, 251-265.	2.4	63
76	"Teflon-coated peptidesâ€: Hexafluoroacetone trihydrate as a structure stabilizer for peptides. , 1997, 42, 125-128.		63
77	Omega amino acids in peptide design: incorporation into helices. Biopolymers, 1996, 39, 769-777.	2.4	40
78	Solid state and solution conformations of a helical peptide with a central glyâ€gly segment. Biopolymers, 1996, 38, 515-526.	2.4	17
79	Omega amino acids in peptide design: incorporation into helices. Biopolymers, 1996, 39, 769-777.	2.4	13