
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aortic Regurgitation Index Defines Severity of Peri-Prosthetic Regurgitation and Predicts Outcome in Patients After Transcatheter Aortic Valve Implantation. Journal of the American College of Cardiology, 2012, 59, 1134-1141.	2.8	371
2	Transcatheter edge-to-edge repair for reduction of tricuspid regurgitation: 6-month outcomes of the TRILUMINATE single-arm study. Lancet, The, 2019, 394, 2002-2011.	13.7	283
3	6-Month Outcomes of Tricuspid Valve Reconstruction for Patients With SevereÂTricuspidÂRegurgitation. Journal of the American College of Cardiology, 2019, 73, 1905-1915.	2.8	172
4	Decrease of pulmonary hypertension impacts on prognosis after transcatheter aortic valve replacement. EuroIntervention, 2014, 9, 1042-1049.	3.2	71
5	Intravascular Lithotripsy in Calcified Coronary Lesions. Circulation: Cardiovascular Interventions, 2019, 12, e008154.	3.9	69
6	Coronary Access After TAVR-in-TAVR as Evaluated by Multidetector Computed Tomography. JACC: Cardiovascular Interventions, 2020, 13, 2528-2538.	2.9	65
7	Transcatheter Aortic Valve ReplacementÂWith Next-Generation Self-Expanding Devices. JACC: Cardiovascular Interventions, 2019, 12, 433-443.	2.9	59
8	The revised EuroSCORE II for the prediction of mortality in patients undergoing transcatheter aortic valve implantation. Clinical Research in Cardiology, 2013, 102, 821-829.	3.3	47
9	Device-Related Thrombus After Left Atrial Appendage Closure: Data on Thrombus Characteristics, Treatment Strategies, and Clinical Outcomes From the EUROC-DRT-Registry. Circulation: Cardiovascular Interventions, 2021, 14, e010195.	3.9	46
10	Risk scores and biomarkers for the prediction of 1-year outcome after transcatheter aortic valve replacement. American Heart Journal, 2015, 170, 821-829.	2.7	43
11	Thrombus Formation After Left Atrial Appendage Occlusion With the AmplatzerÂAmulet Device. JACC: Clinical Electrophysiology, 2017, 3, 71-75.	3.2	41
12	In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. Journal of Biomechanics, 2014, 47, 957-965.	2.1	37
13	Pre-Procedural Hemodynamic Status Improves the Discriminatory Value ofÂtheÂAortic Regurgitation Index in Patients Undergoing Transcatheter AorticÂValve Replacement. JACC: Cardiovascular Interventions, 2016, 9, 700-711.	2.9	33
14	Periprocedural Myocardial Injury Depends onÂTranscatheter Heart Valve Type But DoesÂNotÂPredict Mortality in Patients After Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2017, 10, 1550-1560.	2.9	33
15	First in vitro and in vivo results of an anti-human CD133-antibody coated coronary stent in the porcine model. Clinical Research in Cardiology, 2013, 102, 413-425.	3.3	32
16	Effect of Transcatheter Aortic Valve Replacement on Concomitant Mitral Regurgitation andÂltsÂlmpact on Mortality. JACC: Cardiovascular Interventions, 2021, 14, 1181-1192.	2.9	31
17	Routine Endovascular Treatment With a Stent Graft for Access-Site and Access-Related Vascular Injury in Transfemoral Transcatheter Aortic Valve Implantation. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	29
18	Transcatheter Treatment of Residual Significant Mitral Regurgitation Following TAVR. JACC: Cardiovascular Interventions, 2020, 13, 2782-2791.	2.9	29

#	Article	IF	CITATIONS
19	Safety and Efficacy of Protamine Administration for Prevention of BleedingÂComplications in Patients Undergoing TAVR. JACC: Cardiovascular Interventions, 2020, 13, 1471-1480.	2.9	28
20	Incidence, predictors and outcomes of deviceâ€related thrombus after left atrial appendage closure with the WATCHMAN device—Insights from the EWOLUTION real world registry. Catheterization and Cardiovascular Interventions, 2021, 97, E1019-E1024.	1.7	27
21	Transcatheter aortic valve implantation leads to a restoration of von Willebrand factor (VWF) abnormalities in patients with severe aortic stenosis – Incidence and relevance of clinical and subclinical VWF dysfunction in patients undergoing transfemoral TAVI. Thrombosis Research, 2017, 151, 23-28.	1.7	25
22	Temporal trends of TAVI treatment characteristics in high volume centers in Germany 2013–2020. Clinical Research in Cardiology, 2022, 111, 881-888.	3.3	23
23	Hydrodynamic Performance of the Medtronic CoreValve and the Edwards SAPIEN XT Transcatheter Heart Valve in Surgical Bioprostheses: An InÂVitro Valve-in-Valve Model. Annals of Thoracic Surgery, 2016, 101, 118-124.	1.3	22
24	Doppler-based renal resistance index for the detection of acute kidney injury and the non-invasive evaluation of paravalvular aortic regurgitation after transcatheter aortic valve implantation. EuroIntervention, 2014, 9, 1309-1316.	3.2	22
25	TAVI induces an elevation of hemostasis-related biomarkers, which is not causative for post-TAVI thrombocytopenia. International Journal of Cardiology, 2016, 221, 719-725.	1.7	21
26	Early versus newer generation transcatheter heart valves for transcatheter aortic valve implantation: Echocardiographic and hemodynamic evaluation of an all-comers study cohort using the dimensionless aortic regurgitation index (AR-index). PLoS ONE, 2019, 14, e0217544.	2.5	17
27	Long-term follow-up after stent graft placement for access-site and access-related vascular injury during TAVI – The Bonn-Copenhagen experience. International Journal of Cardiology, 2019, 281, 42-46.	1.7	17
28	Hemodynamics inside the neo―and native sinus after TAVR: Effects of implant depth and cardiac output on flow field and coronary flow. Artificial Organs, 2021, 45, 68-78.	1.9	17
29	Balloon post-dilation and valve-in-valve implantation for the reduction of paravalvular leakage with use of the self-expanding CoreValve prosthesis. EuroIntervention, 2016, 11, 1140-1147.	3.2	17
30	Contrast-free, echocardiography-guided left atrial appendage occlusion (LAAo): a propensity-matched comparison with conventional LAAo using the AMPLATZERâ"¢ Amuletâ"¢ device. Clinical Research in Cardiology, 2019, 108, 333-340.	3.3	15
31	Impact of Predilatation Prior to Transcatheter Aortic Valve Implantation With the Self-Expanding Acurate neo Device (from the Multicenter NEOPRO Registry). American Journal of Cardiology, 2020, 125, 1369-1377.	1.6	15
32	Valve-in-valve outcome: design impact of a pre-existing bioprosthesis on the hydrodynamics of an Edwards Sapien XT valve. European Journal of Cardio-thoracic Surgery, 2016, 51, ezw317.	1.4	12
33	Impact of Tricuspid Regurgitation in Patients Undergoing Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2020, 13, 1135-1137.	2.9	12
34	Clinical outcomes and thrombus resolution in patients with solid left atrial appendage thrombi: results of a single-center real-world registry. Clinical Research in Cardiology, 2021, 110, 72-83.	3.3	12
35	Risk modeling in transcatheter aortic valve replacement remains unsolved: an external validation study in 2946 German patients. Clinical Research in Cardiology, 2021, 110, 368-376.	3.3	12
36	Incidence, predictors, and relevance of acute kidney injury in patients undergoing left atrial appendage closure with Amplatzer occluders: a multicentre observational study. Clinical Research in Cardiology, 2020, 109, 444-453.	3.3	11

#	Article	IF	CITATIONS
37	Fractional flow reserve in patients with coronary artery disease undergoing TAVI: a prospective analysis. Clinical Research in Cardiology, 2020, 109, 746-754.	3.3	10
38	Predictive factors and long-term prognosis of transcatheter aortic valve implantation-associated endocarditis. Clinical Research in Cardiology, 2020, 109, 1165-1176.	3.3	10
39	Clinical and echocardiographic risk factors for device-related thrombus after left atrial appendage closure: an analysis from the multicenter EUROC-DRT registry. Clinical Research in Cardiology, 2022, 111, 1276-1285.	3.3	10
40	Outcome in <scp>TAVI</scp> patients with symptomatic aortic stenosis not fulfilling <scp>PARTNER</scp> study inclusion criteria. Catheterization and Cardiovascular Interventions, 2015, 86, 1097-1104.	1.7	9
41	Circulating Microparticles Decrease After Cardiac Stress in Patients With Significant Coronary Artery Stenosis. Clinical Cardiology, 2016, 39, 570-577.	1.8	8
42	In vitro hydrodynamic and acute clinical performance of a novel self-expanding transcatheter heart valve in various surgical bioprostheses. EuroIntervention, 2018, 13, 2014-2017.	3.2	8
43	Impact of implant depth on hydrodynamic function of the ALLEGRA bioprosthesis in valve-in-valve interventions. EuroIntervention, 2020, 15, e1335-e1342.	3.2	8
44	Outcomes of myocardial fibrosis in patients undergoing transcatheter aortic valve replacement. EuroIntervention, 2020, 15, 1417-1423.	3.2	7
45	Use of a balloon-expandable transfemoral sheath in a TAVI cohort with complex access site - a propensity score matched analysis. EuroIntervention, 2015, 11, 698-704.	3.2	7
46	Clinical outcomes of transcatheter aortic valve implantation in patients younger than 70 years rejected for surgery: the AMTRAC registry. EuroIntervention, 2022, 17, 1289-1297.	3.2	7
47	First experience with a new balloonâ€expandable and reâ€collapsible vascular sheath in transfemoral percutaneous aortic valve replacement. Catheterization and Cardiovascular Interventions, 2013, 82, E613-6.	1.7	6
48	Mechanical properties of currently available left atrial appendage occlusion devices: A benchâ€ŧesting analysis. Artificial Organs, 2019, 43, 656-665.	1.9	6
49	Transverse aortic constriction-induced heart failure leads to increased levels of circulating microparticles. International Journal of Cardiology, 2022, 347, 54-58.	1.7	6
50	Left atrial appendage closure in a patient with atrial fibrillation after mechanical mitral valve replacement and cardio-embolic stroke despite effective oral anticoagulant therapy: a case report. Clinical Research in Cardiology, 2014, 103, 587-589.	3.3	5
51	TAVR outcome after reclassification of aortic valve stenosis by using a hybrid continuity equation that combines computed tomography and echocardiography data. Catheterization and Cardiovascular Interventions, 2020, 96, 958-967.	1.7	5
52	A Randomized Trial Comparing Short versus Prolonged Hemostasis with Rescue Recanalization by Ipsilateral Ulnar Artery Compression: Impact on Radial Artery Occlusion—The RESCUE-RAO Trial. Journal of Interventional Cardiology, 2020, 2020, 1-7.	1.2	4
53	Frailty, malnutrition, and the endocrine system impact outcome in patients undergoing aortic valve replacement. Catheterization and Cardiovascular Interventions, 2022, 99, 145-157.	1.7	4
54	Amplatzer left atrial appendage closure: Single versus combined procedures. Catheterization and Cardiovascular Interventions, 2021, 97, E973-E981.	1.7	4

#	Article	IF	CITATIONS
55	Haemodynamic differences between two generations of a balloon-expandable transcatheter heart valve. Heart, 2022, 108, 1479-1485.	2.9	4
56	Percutaneous trans-axilla transcatheter aortic valve replacement. Heart and Vessels, 2022, 37, 1801-1807.	1.2	4
57	Assessment of LAA Strain and Thrombus Mobility and Its Impact on Thrombus Resolution—Added-Value of a Novel Echocardiographic Thrombus Tracking Method. Cardiovascular Engineering and Technology, 2022, , 1.	1.6	4
58	Implications of hydrodynamic testing to guide sizing of selfâ€expanding transcatheter heart valves for valveâ€inâ€valve procedures. Catheterization and Cardiovascular Interventions, 2020, 96, E332-E340.	1.7	3
59	Healing a Heart of Stone. JACC: Cardiovascular Interventions, 2020, 13, 532-533.	2.9	3
60	Risk of mortality following transcatheter aortic valve replacement for low-flow low-gradient aortic stenosis. Clinical Research in Cardiology, 2021, 110, 391-398.	3.3	3
61	Feasibility and Safety of an 8 F Angioseal® Vascular Closure Device for Closure of Large Bore Impella CP® Access. Journal of Endovascular Therapy, 2021, , 152660282110479.	1.5	3
62	Baseline PA/BSA ratio in patients undergoing transcatheter aortic valve replacement – A novel CT-based marker for the prediction of pulmonary hypertension and outcome. International Journal of Cardiology, 2022, 348, 26-32.	1.7	3
63	Right heart transcatheter valve therapies – a review of prostheses for the pulmonary and tricuspid positions. Expert Review of Medical Devices, 2015, 12, 163-174.	2.8	2
64	Percutaneous treatment of a saccular coronary artery aneurysm using multimodal imaging and rapid prototyping. European Heart Journal, 2018, 39, 4125-4125.	2.2	2
65	†What you see is what you'll get': giant extra-appendage left atrial thrombus after left atrial appendage occlusion for persisting left atrial appendage thrombus. European Heart Journal Cardiovascular Imaging, 2019, 21, 465.	1.2	2
66	Letter by Sedaghat and Nickenig Regarding Article, "Device-Related Thrombus After Left Atrial Appendage Closure: Incidence, Predictors, and Outcomes― Circulation, 2019, 139, 1241-1242.	1.6	2
67	Percutaneous left atrial appendage closure using the TrueFusionâ"¢ fusion-imaging technology. Clinical Research in Cardiology, 2020, 109, 646-648.	3.3	2
68	Large extracellular vesicles in the left atrial appendage in patients with atrial fibrillation—the missing link?. Clinical Research in Cardiology, 2021, , 1.	3.3	2
69	Circulating chaperones in patients with aortic valve stenosis undergoing TAVR: impact of concomitant chronic kidney disease. Translational Research, 2021, 233, 117-126.	5.0	2
70	Left atrial function index (LAFI) and outcome in patients undergoing transcatheter aortic valve replacement. Clinical Research in Cardiology, 2022, 111, 944-954.	3.3	2
71	Incidence, persistence, and clinical relevance of iatrogenic atrial septal defects after percutaneous left atrial appendage occlusion. Echocardiography, 2022, 39, 65-73.	0.9	2
72	TCT-823 In-Vitro Assessment Of The Influence Of Oval Annuli On The Hydrodynamic Function Of Percutaneous Heart Valve Prostheses. Journal of the American College of Cardiology, 2012, 60, B239.	2.8	1

#	Article	IF	CITATIONS
73	Influence of the Measurement Plane on Aortic Annulus Indices: Structural and Clinical Implications. Cardiovascular Engineering and Technology, 2013, 4, 513-519.	1.6	1
74	Mitral meets mortality. Lancet, The, 2018, 391, 916-918.	13.7	1
75	Choosing a Self-Expanding TranscatheterÂHeart Valve in 2018. JACC: Cardiovascular Interventions, 2018, 11, 2323-2325.	2.9	1
76	Mechanical Performance of Two Left Atrial Appendage Occlusion Systems: In Vitro Comparison of Tug Force, Radial Force, Sealing and Deformation. Annals of Biomedical Engineering, 2018, 46, 1337-1347.	2.5	1
77	Fatal Cardioembolic Syndrome Due to Late Device-Related Thrombus After LeftÂAtrial Appendage Occlusion. JACC: Cardiovascular Interventions, 2019, 12, e91-e92.	2.9	1
78	CHA2DS2-VASC score predicts coronary artery disease progression and mortality after ventricular arrhythmia in patients with implantable cardioverter-defibrillator. IJC Heart and Vasculature, 2021, 34, 100802.	1.1	1
79	Spleen Size and Thrombocytopenia After Transcatheter Aortic Valve Implantation. American Journal of Cardiology, 2021, 157, 85-92.	1.6	1
80	Reply. Annals of Thoracic Surgery, 2016, 102, 350.	1.3	0
81	Reply. JACC: Clinical Electrophysiology, 2017, 3, 190-191.	3.2	Ο
82	Reply. JACC: Clinical Electrophysiology, 2017, 3, 192-193.	3.2	0
83	"One Does Not Simply Walk Into…―aÂValve-in-Valve Implantation in Patients With a Degenerated Stentless Bioprosthesis. JACC: Cardiovascular Interventions, 2019, 12, 1227-1228.	2.9	Ο
84	When past becomes prologue: extremely late mechanical complication after implantation of an atrial septal occluder device. European Heart Journal, 2019, 40, 3657-3657.	2.2	0
85	Predilation in Transcatheter Aortic Valve Implantation. , 2019, , 339-349.		0
86	TCT-271 Outcomes of Transcatheter Aortic Valve Replacement Using Balloon vs Self-Expandable Valves Stratified by Center Valve Preference – Insights From the Multicenter Aortic+Mitral TRAnsCatheter (AMTRAC) Registry. Journal of the American College of Cardiology, 2021, 78, B110-B111.	2.8	0
87	Transcatheter Leaflet Strategies for Tricuspid Regurgitation TriClip and CLASP. Interventional Cardiology Clinics, 2022, 11, 51-66.	0.4	0