
Lee C Moores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9642150/publications.pdf Version: 2024-02-01

LEE C MOORES

#	Article	IF	CITATIONS
1	Analytical Methods Incorporating Molecularly Imprinted Polymers (MIPs) for the Quantification of Microcystins: A Mini-Review. Critical Reviews in Analytical Chemistry, 2022, 52, 1244-1258.	3.5	12
2	Effect of UV-light exposure duration, light source, and aging on nitroguanidine (NQ) degradation product profile and toxicity. Science of the Total Environment, 2022, 823, 153554.	8.0	3
3	ACEstat: A DIY Guide to Unlocking the Potential of Integrated Circuit Potentiostats for Open-Source Electrochemical Analysis. Analytical Chemistry, 2022, 94, 4906-4912.	6.5	8
4	Toward bioinspired polymer adhesives: activation assisted via HOBt for grafting of dopamine onto poly(acrylic acid). Royal Society Open Science, 2022, 9, 211637.	2.4	2
5	Sensor Array Chip for Realâ€īime Field Detection and Discrimination of Organophosphorus Neurotoxins. ChemElectroChem, 2022, 9, .	3.4	6
6	Multi-species Aquatic Toxicity Assessment of 1-Methyl-3-Nitroguanidine (MeNQ). Archives of Environmental Contamination and Toxicology, 2021, 80, 426-436.	4.1	2
7	Siteâ€Specific Selective Bending of Actuators using Radio Frequency Heating. Advanced Engineering Materials, 2021, 23, 2000873.	3.5	7
8	In Situ Preconcentration and Quantification of Cu ²⁺ via Chelating Polymer-Wrapped Multiwalled Carbon Nanotubes. ACS Omega, 2021, 6, 5158-5165.	3.5	9
9	A Generalized Potentiostat Adaptor for Multiplexed Electroanalysis. Analytical Chemistry, 2021, 93, 7381-7387.	6.5	13
10	Physicochemical Parameters of Insensitive Munition Constituent Methylnitroguanidine (MeNQ) of Importance to Environmental Fate and Transport. Propellants, Explosives, Pyrotechnics, 2021, 46, 1180-1187.	1.6	2
11	Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents. Biosensors and Bioelectronics, 2021, 182, 113172.	10.1	29
12	Universal patterns of radio-frequency heating in nanomaterial-loaded structures. Applied Materials Today, 2021, 23, 101044.	4.3	12
13	Toward Rational Design of Electrogenerated Molecularly Imprinted Polymers (eMIPs): Maximizing Monomer/Template Affinity. ACS Applied Polymer Materials, 2021, 3, 4523-4533.	4.4	11
14	Radio frequency heating of PEDOT:PSS. Polymer, 2021, 230, 124077.	3.8	6
15	Green MIP-202(Zr) Catalyst: Degradation and Thermally Robust Biomimetic Sensing of Nerve Agents. Journal of the American Chemical Society, 2021, 143, 18261-18271.	13.7	33
16	Photo degradation kinetics of insensitive munitions constituents nitroguanidine, nitrotriazolone, and dinitroanisole in natural waters. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112094.	3.9	16
17	Chemiresistors for the Realâ€Time Wireless Detection of Anions. Advanced Functional Materials, 2020, 30, 1907087.	14.9	16
18	Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances. TrAC - Trends in Analytical Chemistry, 2020, 132, 116037.	11.4	36

LEE C MOORES

#	Article	IF	CITATIONS
19	Comparative Toxicological Evaluation of UVâ€Degraded versus Parentâ€Insensitive Munition Compound 1â€Methylâ€3â€Nitroguanidine in Fathead Minnow. Environmental Toxicology and Chemistry, 2020, 39, 612-622.	4.3	7
20	Regioselectivity of Hydroxyl Radical Reactions with Arenes in Nonaqueous Solutions. Journal of Organic Chemistry, 2019, 84, 3260-3269.	3.2	7
21	Leveraging chemical actinometry and optical radiometry to reduce uncertainty in photochemical research. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 279-287.	3.9	7
22	Aquatic toxicity of photoâ€degraded insensitive munition 101 (IMXâ€101) constituents. Environmental Toxicology and Chemistry, 2017, 36, 2050-2057.	4.3	35
23	The increased toxicity of UV-degraded nitroguanidine and IMX-101 to zebrafish larvae: Evidence implicating oxidative stress. Aquatic Toxicology, 2017, 190, 228-245.	4.0	20