Michelle M Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964171/publications.pdf

Version: 2024-02-01

44 papers

1,579 citations

304743 22 h-index 330143 37 g-index

47 all docs

47 docs citations

47 times ranked

1673 citing authors

#	Article	IF	CITATIONS
1	Library analysis of SCHEMA-guided protein recombination. Protein Science, 2003, 12, 1686-1693.	7.6	138
2	Structure-guided SCHEMA recombination of distantly related \hat{l}^2 -lactamases. Protein Engineering, Design and Selection, 2006, 19, 563-570.	2.1	103
3	Confirmation of a second natural preQ ₁ aptamer class in Streptococcaceae bacteria. Rna, 2008, 14, 685-695.	3 . 5	102
4	Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature, 2009, 462, 656-659.	27.8	102
5	A variant riboswitch aptamer class for <i>S</i> -adenosylmethionine common in marine bacteria. Rna, 2009, 15, 2046-2056.	3.5	96
6	On the conservative nature of intragenic recombination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5380-5385.	7.1	95
7	Most RNAs regulating ribosomal protein biosynthesis in Escherichia coli are narrowly distributed to Gammaproteobacteria. Nucleic Acids Research, 2013, 41, 3491-3503.	14.5	92
8	Unique glycineâ€activated riboswitch linked to glycine–serine auxotrophy in SAR11. Environmental Microbiology, 2009, 11, 230-238.	3.8	90
9	Arabidopsis thaliana LUP1 Converts Oxidosqualene to Multiple Triterpene Alcohols and a Triterpene Diol. Organic Letters, 2000, 2, 2257-2259.	4.6	69
10	Directed Evolution To Generate Cycloartenol Synthase Mutants that Produce Lanosterol. Organic Letters, 2002, 4, 1395-1398.	4.6	65
11	Challenges of ligand identification for riboswitch candidates. RNA Biology, 2011, 8, 5-10.	3.1	61
12	Identification of candidate structured RNAs in the marine organism 'Candidatus Pelagibacter ubique'. BMC Genomics, 2009, 10, 268.	2.8	56
13	Steric Bulk at Cycloartenol Synthase Position 481 Influences Cyclization and Deprotonation. Organic Letters, 2000, 2, 2261-2263.	4.6	45
14	Directed Evolution Experiments Reveal Mutations at Cycloartenol Synthase Residue His477 that Dramatically Alter Catalysis. Organic Letters, 2002, 4, 4459-4462.	4.6	44
15	The Transcriptional landscape of Streptococcus pneumoniae TIGR4 reveals a complex operon architecture and abundant riboregulation critical for growth and virulence. PLoS Pathogens, 2018, 14, e1007461.	4.7	37
16	RNA structures regulating ribosomal protein biosynthesis in bacilli. RNA Biology, 2013, 10, 1180-1184.	3.1	36
17	<i>In Vivo</i> Behavior of the Tandem Glycine Riboswitch in <i>Bacillus subtilis</i> MBio, 2017, 8, .	4.1	36
18	The role of <scp>mRNA</scp> structure in bacterial translational regulation. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1370.	6.4	33

#	Article	IF	CITATIONS
19	Cloning and characterization of the Dictyostelium discoideum cycloartenol synthase cDNA. Lipids, 2000, 35, 249-255.	1.7	29
20	Complete RNA inverse folding: computational design of functional hammerhead ribozymes. Nucleic Acids Research, 2014, 42, 11752-11762.	14.5	29
21	Bacterial RNA motif in the 5′ UTR of <i>rpsF</i> interacts with an S6:S18 complex. Rna, 2014, 20, 168-176.	3.5	27
22	Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase. ELife, 2014, 3, e04506.	6.0	26
23	Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web. Bioinformatics, 2013, 29, 381-383.	4.1	23
24	Discovery and validation of novel and distinct RNA regulators for ribosomal protein S15 in diverse bacterial phyla. BMC Genomics, 2014, 15, 657.	2.8	21
25	An S6:S18 complex inhibits translation of <i>E. coli rpsF</i> . Rna, 2015, 21, 2039-2046.	3.5	19
26	rRNA Mimicry in RNA Regulation of Gene Expression. Microbiology Spectrum, 2018, 6, .	3.0	17
27	Comparative Metatranscriptomics of Periodontitis Supports a Common Polymicrobial Shift in Metabolic Function and Identifies Novel Putative Disease-Associated ncRNAs. Frontiers in Microbiology, 2020, 11, 482.	3.5	16
28	Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures. PLoS Genetics, 2015, 11, e1005720.	3.5	15
29	Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature. Journal of Molecular Evolution, 2021, 89, 165-171.	1.8	13
30	Recognizing RNA structural motifs in HT-SELEX data for ribosomal protein S15. BMC Bioinformatics, 2017, 18, 298.	2.6	9
31	Fitness advantages conferred by the L20-interacting RNA <i>cis</i> regulator of ribosomal protein synthesis in <i>Bacillus subtilis</i> Rna, 2018, 24, 1133-1143.	3.5	9
32	Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.	1.8	8
33	Regulatory context drives conservation of glycine riboswitch aptamers. PLoS Computational Biology, 2019, 15, e1007564.	3.2	6
34	RNA regulators responding to ribosomal protein S15 are frequent in sequence space. Nucleic Acids Research, 2016, 44, gkw754.	14.5	5
35	Sampled ensemble neutrality as a feature to classify potential structured RNAs. BMC Genomics, 2015, 16, 35.	2.8	3
36	Siblings or doppelgÃngers? Deciphering the evolution of structured cis-regulatory RNAs beyond homology. Biochemical Society Transactions, 2020, 48, 1941-1951.	3.4	3

#	Article	IF	CITATIONS
37	Debating tRNA Origins. Journal of Molecular Evolution, 2020, 88, 227-227.	1.8	1
38	rRNA Mimicry in RNA Regulation of Gene Expression. , 2018, , 101-116.		0
39	The Impact of mRNA Structures Regulating Transcription Attenuation on Bacterial Fitness. FASEB Journal, 2015, 29, 711.14.	0.5	O
40	2021 Zuckerkandl Prize. Journal of Molecular Evolution, 2022, 90, 1-1.	1.8	0
41	Regulatory context drives conservation of glycine riboswitch aptamers. , 2019, 15, e1007564.		O
42	Regulatory context drives conservation of glycine riboswitch aptamers., 2019, 15, e1007564.		0
43	Regulatory context drives conservation of glycine riboswitch aptamers. , 2019, 15, e1007564.		0
44	Regulatory context drives conservation of glycine riboswitch aptamers., 2019, 15, e1007564.		0