

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9639481/publications.pdf Version: 2024-02-01

TYDONE

#	Article	IF	CITATIONS
1	Methane selective oxidation on metal oxide catalysts at low temperatures with O2 using an NO/NO2 oxygen atom shuttle. Journal of Catalysis, 2022, 408, 401-412.	6.2	10
2	lsotopic ¹⁸ 0/ ¹⁶ 0 substitution study on the direct partial oxidation of CH ₄ to dimethyl ether over a Pt/Y ₂ 0 ₃ catalyst using NO/O ₂ as an oxidant. Catalysis Science and Technology, 2021, 11, 2708-2712.	4.1	5
3	Optimizing the carburization conditions of supported rhenium carbide for guaiacol conversion. Applied Catalysis A: General, 2021, 623, 118267.	4.3	4
4	The Delplot kinetic method applied to systems with adsorbates: Hydrodeoxygenation of benzofuran on a bimetallic CoPd phosphide catalyst supported on KUSY. Journal of Catalysis, 2021, 404, 786-801.	6.2	10
5	Conversion of levulinic acid over rhenium oxide catalysts: Effect of metal content. Applied Catalysis A: General, 2021, 625, 118328.	4.3	5
6	Conversion of guaiacol over metal carbides supported on activated carbon catalysts. Catalysis Today, 2020, 356, 376-383.	4.4	21
7	Valorization of biomass derivatives through the conversion of phenol over silica-supported Mo-Re oxide catalysts. Fuel, 2020, 259, 116245.	6.4	13
8	A New One-Pot Sequential Reduction-Deposition Method for the synthesis of Silica-supported NiPt and CuPt Bimetallic Catalysts. Applied Catalysis A: General, 2020, 591, 117371.	4.3	14
9	Applicability of the Delplot method for the determination of catalytic reaction sequences: Hydrodeoxygenation of γ-valerolactone on Ni2P/MCM-41. Chemical Engineering Science, 2020, 223, 115697.	3.8	9
10	The direct molecular oxygen partial oxidation of CH4 to dimethyl ether without methanol formation over a Pt/Y2O3 catalyst using an NO/NO2 oxygen atom shuttle. Journal of Catalysis, 2020, 389, 352-365.	6.2	21
11	Selective conversion of biomass-derived furfural to cyclopentanone over carbon nanotube-supported Ni catalyst in Pickering emulsions. Catalysis Communications, 2020, 144, 106092.	3.3	12
12	Thermal Modification Effect on Supported Cu-Based Activated Carbon Catalyst in Hydrogenolysis of Glycerol. Materials, 2020, 13, 603.	2.9	7
13	The promoter effect of Co on the catalytic activity of the Cu oxide active phase supported on Al ₂ O ₃ in the hydrogenolysis of glycerol. New Journal of Chemistry, 2019, 43, 15636-15645.	2.8	5
14	Effect of Re content and support in the liquid phase conversion of furfural to furfuryl alcohol and 2-methyl furan over ReOx catalysts. Fuel, 2019, 242, 532-544.	6.4	32
15	A study of the hydrodeoxygenation of anisole over Re-MoOx/TiO2 catalyst. Applied Catalysis A: General, 2018, 549, 225-236.	4.3	40
16	Hydrogenation of sodium hydrogen carbonate in aqueous phase using metal/activated carbon catalysts. Applied Catalysis B: Environmental, 2018, 224, 368-375.	20.2	30
17	Effect of phosphorus on the activity of Cu/SiO 2 catalysts in the hydrogenolysis of glycerol. Catalysis Today, 2017, 279, 217-223.	4.4	17
18	Catalytic hydrodeoxygenation of anisole over Re-MoO x /TiO 2 and Re-VO x /TiO 2 catalysts. Applied Catalysis B: Environmental, 2017, 208, 60-74.	20.2	73

Tyrone

#	Article	IF	CITATIONS
19	Conversion of guaiacol over different Re active phases supported on CeO2-Al2O3. Applied Catalysis A: General, 2017, 547, 256-264.	4.3	17
20	STUDY OF THE CATALYTIC CONVERSION AND ADSORPTION OF ABIETIC ACID ON ACTIVATED CARBON: EFFECT OF SURFACE ACIDITY. Journal of the Chilean Chemical Society, 2016, 61, 3239-3245.	1.2	5
21	Energy Production, Decontamination, and Hydrogenation Reactions over Perovskite-Type Oxide Catalyst. , 2016, , .		1
22	Phenol hydrodeoxygenation: effect of support and Re promoter on the reactivity of Co catalysts. Catalysis Science and Technology, 2016, 6, 7289-7306.	4.1	56
23	Carbon nanofiber-supported ReO _x catalysts for the hydrodeoxygenation of lignin-derived compounds. Catalysis Science and Technology, 2016, 6, 4356-4369.	4.1	59
24	Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: effect of the support and Ni loading. RSC Advances, 2016, 6, 2611-2623.	3.6	94
25	Hydrodeoxygenation of 2-methoxyphenol over different Re active phases supported on SiO 2 catalysts. Applied Catalysis A: General, 2015, 490, 71-79.	4.3	78
26	Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts. Applied Catalysis A: General, 2014, 477, 64-74.	4.3	144
27	Hydrodeoxygenation of guaiacol over ReS2/activated carbon catalysts. Support and Re loading effect. Applied Catalysis A: General, 2014, 475, 427-437.	4.3	42
28	EFFECT OF MO CONTENT IN MO(X)/γ-AL2O3 CATALYSTS OVER THE CONVERSION OF 2-METHOXYPHENOL AS LIGNIN-DERIVATES COMPONENTS. Journal of the Chilean Chemical Society, 2013, 58, 1947-1951.	1.2	5
29	Role of Liquid vs Vapor Water in the Hydrothermal Degradation of SBA-15. Journal of Physical Chemistry C, 2012, 116, 22802-22814.	3.1	47
30	Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Applied Catalysis A: General, 2012, 435-436, 51-60.	4.3	110
31	Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: Effects of nitriding methods and support properties. Applied Catalysis A: General, 2012, 439-440, 111-124.	4.3	126
32	Guaiacol transformation over unsupported molybdenum-based nitride catalysts. Applied Catalysis A: General, 2012, 413-414, 78-84.	4.3	94
33	Size and Spatial Distribution of Micropores in SBA-15 using CM-SANS. Chemistry of Materials, 2011, 23, 3828-3840.	6.7	45
34	Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catalysis Today, 2011, 172, 232-239.	4.4	109
35	Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer–Tropsch catalysts. Applied Catalysis A: General, 2010, 388, 57-67.	4.3	82
36	Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Protein Engineering, Design and Selection, 2007, 21, 29-35.	2.1	68