Thomas Moritz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9639234/publications.pdf

Version: 2024-02-01

331670 265206 53 1,888 21 42 h-index citations g-index papers 53 53 53 2479 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeting transgenic proteins to alpha granules for platelet-directed gene therapy. Molecular Therapy - Nucleic Acids, 2022, 27, 774-786.	5.1	3
2	Ex Vivo Generation of CAR Macrophages from Hematopoietic Stem and Progenitor Cells for Use in Cancer Therapy. Cells, 2022, 11, 994.	4.1	18
3	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	4.8	20
4	iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell, 2021, 28, 906-922.e6.	11.1	13
5	Efficient Genetic Safety Switches for Future Application of iPSC-Derived Cell Transplants. Journal of Personalized Medicine, 2021, 11, 565.	2.5	11
6	Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Therapy, 2021, 28, 477-493.	4.5	5
7	Generation of an NFκB-Driven Alpharetroviral "All-in-One―Vector Construct as a Potent Tool for CAR NK Cell Therapy. Frontiers in Immunology, 2021, 12, 751138.	4.8	11
8	Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica, 2020, 105, 1147-1157.	3.5	7
9	Modeling MyD88 Deficiency In Vitro Provides New Insights in Its Function. Frontiers in Immunology, 2020, 11, 608802.	4.8	4
10	Design and Characterization of an "All-in-One―Lentiviral Vector System Combining Constitutive Anti-GD2 CAR Expression and Inducible Cytokines. Cancers, 2020, 12, 375.	3.7	68
11	Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells. Gene Therapy, 2020, 27, 297-306.	4.5	8
12	Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. International Journal of Molecular Sciences, 2020, 21, 2481.	4.1	12
13	Long-Term Safety and Efficacy of Gene-Pulmonary Macrophage Transplantation Therapy of PAP in Csf2raâ^'/â^' Mice. Molecular Therapy, 2019, 27, 1597-1611.	8.2	21
14	Human iPSC-based model of severe congenital neutropenia reveals elevated UPR and DNA damage in CD34+ cells preceding leukemic transformation. Experimental Hematology, 2019, 71, 51-60.	0.4	16
15	Pulmonary Transplantation of Human Induced Pluripotent Stem Cell–derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 350-360.	5.6	57
16	Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nature Communications, 2018, 9, 5088.	12.8	105
17	iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice. Stem Cell Reports, 2018, 11, 696-710.	4.8	40
18	Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Research, 2017, 20, 70-75.	0.7	20

#	Article	IF	CITATIONS
19	Human Effector Memory T Helper Cells Engage with Mouse Macrophages and Cause Graft-versus-Host–Like Pathology in Skin of Humanized Mice Used in a Nonclinical Immunization Study. American Journal of Pathology, 2017, 187, 1380-1398.	3.8	23
20	The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function. Scientific Reports, 2017, 7, 7919.	3.3	8
21	Function and Safety of Lentivirus-Mediated Gene Transfer for <i>CSF2RA</i> -Deficiency. Human Gene Therapy Methods, 2017, 28, 318-329.	2.1	16
22	Ex vivo Generation of Genetically Modified Macrophages from Human Induced Pluripotent Stem Cells. Transfusion Medicine and Hemotherapy, 2017, 44, 135-142.	1.6	15
23	TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Scientific Reports, 2017, 7, 15195.	3.3	22
24	Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions. Molecular Medicine, 2016, 22, 274-285.	4.4	74
25	Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports, 2016, 7, 292-305.	4.8	23
26	Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory TÂcells in scurfy mice. European Journal of Immunology, 2016, 46, 1656-1668.	2.9	17
27	Chemoprotection of murine hematopoietic cells by combined gene transfer of cytidine deaminase (CDD) and multidrug resistance 1 gene (MDR1). Journal of Experimental and Clinical Cancer Research, 2015, 34, 148.	8.6	5
28	Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies. Stem Cell Reports, 2015, 4, 282-296.	4.8	173
29	A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Research, 2015, 43, 1577-1592.	14.5	70
30	TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials, 2015, 69, 191-200.	11.4	76
31	Gene Correction of Human Induced Pluripotent Stem Cells Repairs the Cellular Phenotype in Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 167-182.	5.6	85
32	Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model. Molecular Therapy - Nucleic Acids, 2014, 3, e200.	5.1	8
33	Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Science Translational Medicine, 2014, 6, 250ra113.	12.4	106
34	Efficiency and Safety of O ⁶ -Methylguanine DNA Methyltransferase (MGMT ^{P140K})-Mediated <i>In Vivo</i> Selection in a Humanized Mouse Model. Human Gene Therapy, 2014, 25, 144-155.	2.7	8
35	Pulmonary macrophage transplantation therapy. Nature, 2014, 514, 450-454.	27.8	249
36	Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials, 2014, 35, 1531-1542.	11.4	42

#	Article	IF	CITATIONS
37	Lentiviral MGMTP140K-mediated inÂvivo selection employing a ubiquitous chromatin opening element (A2UCOE) linked to a cellular promoter. Biomaterials, 2014, 35, 7204-7213.	11.4	12
38	IL-3 Specifies Early Hematopoietic Development from Human iPSCs and Synergizes with M-CSF and G-CSF on Myeloid Differentiation. Blood, 2014, 124, 4308-4308.	1.4	0
39	Toward Position-independent Retroviral Vector Expression in Pluripotent Stem Cells. Molecular Therapy, 2013, 21, 1474-1477.	8.2	1
40	Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy. Neoplasia, 2013, 15, 239-248.	5.3	10
41	A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny. Stem Cells, 2013, 31, 488-499.	3.2	70
42	In vivo enrichment of cytidine deaminase gene-modified hematopoietic cells by prolonged cytosine-arabinoside application. Cytotherapy, 2012, 14, 451-460.	0.7	10
43	Efficient Hematopoietic Redifferentiation of Induced Pluripotent Stem Cells Derived from Primitive Murine Bone Marrow Cells. Stem Cells and Development, 2012, 21, 689-701.	2.1	28
44	miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Reports, 2011, 12, 1153-1159.	4.5	91
45	Clonal Inventory Screens Uncover Monoclonality Following Serial Transplantation of MGMTP140K-Transduced Stem Cells and Dose-Intense Chemotherapy. Human Gene Therapy, 2011, 22, 697-710.	2.7	17
46	The Ubiquitous Chromatin Opening Element (UCOE) Enhances Lentiviral Cytidine Deaminase (CDD) Expression and Drug Resistance During Hematopoietic Differentiation of Murine Induced Pluripotent Stem Cells (iPSCs),. Blood, 2011, 118, 4179-4179.	1.4	3
47	Doxycycline Regulatable Expression of Cytidine Deaminase Mediates Myeloprotection and Avoids Lymphotoxicity in a Murine Transplant Model. Blood, 2011, 118, 2054-2054.	1.4	0
48	Reciprocal Relationship between O6-Methylguanine-DNA Methyltransferase P140K Expression Level and Chemoprotection of Hematopoietic Stem Cells. Cancer Research, 2008, 68, 6171-6180.	0.9	24
49	Gene Therapy of \hat{I}^2 c-Deficient Pulmonary Alveolar Proteinosis (\hat{I}^2 c-PAP): Studies in a Murine in vivo Model. Molecular Therapy, 2008, 16, 757-764.	8.2	33
50	Gene transfer of cytidine deaminase protects myelopoiesis from cytidine analogs in an in vivo murine transplant model. Blood, 2006, 108, 2965-2971.	1.4	34
51	Hematoprotection by Transfer of Drug-Resistance Genes. Acta Haematologica, 2003, 110, 93-106.	1.4	18
52	Hematoprotection and enrichment of transduced cells in vivo after gene transfer of MGMTP140K into hematopoietic stem cells. Cancer Gene Therapy, 2002, 9, 737-746.	4.6	52
53	Transfer of the cytidine deaminase cDNA into hematopoietic cells. Leukemia Research, 1999, 23, 1047-1053.	0.8	26