
Lan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9638755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limb development genes underlie variation in human fingerprint patterns. Cell, 2022, 185, 95-112.e18.	28.9	30
2	Cellobiose inhibits the release of deoxynivalenol from transformed deoxynivalenol-3-glucoside from Lactiplantibacillus plantarum. Food Chemistry Molecular Sciences, 2022, 4, 100077.	2.1	1
3	Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chemistry, 2021, 354, 129497.	8.2	32
4	Validation of LC-MS/MS Coupled with a Chiral Column for the Determination of 3- or 15-Acetyl Deoxynivalenol Mycotoxins from Fusarium graminearum in Wheat. Toxins, 2021, 13, 659.	3.4	8
5	Chidamide triggers BTG1-mediated autophagy and reverses the chemotherapy resistance in the relapsed/refractory B-cell lymphoma. Cell Death and Disease, 2021, 12, 900.	6.3	8
6	Selective and competitive functions of the AAR and UPR pathways in stress-induced angiogenesis. Cell Discovery, 2021, 7, 98.	6.7	6
7	setd2 knockout zebrafish is viable and fertile: differential and developmental stress-related requirements for Setd2 and histone H3K36 trimethylation in different vertebrate animals. Cell Discovery, 2020, 6, 72.	6.7	8
8	SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood, 2020, 135, 2271-2285.	1.4	31
9	Inhibitor of DNA Binding 3 Is a Potential Prognostic Biomarker in Non-GCB Diffuse Large B-Cell Lymphoma. Blood, 2020, 136, 14-15.	1.4	0
10	Destabilization of AETFC through C/EBPα-mediated repression of LYL1 contributes to t(8;21) leukemic cell differentiation. Leukemia, 2019, 33, 1822-1827.	7.2	5
11	Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 890-899.	7.1	18
12	Differential Expression of CD49f Discriminates the Independently Emerged Hematopoietic Stem Cells and Erythroid-Biased Progenitors. Blood, 2019, 134, 3700-3700.	1.4	3
13	Occurrence and Quantitative Risk Assessment of Twelve Mycotoxins in Eggs and Chicken Tissues in China. Toxins, 2018, 10, 477.	3.4	36
14	Angiogenesis Induced By Aminoacyl-tRNA Synthetase Deficiency Is Dependent on Amino Acid Response (AAR) but Not Unfolded Protein Response (UPR) Pathways. Blood, 2018, 132, 77-77.	1.4	1
15	Loss of Asxl2 leads to myeloid malignancies in mice. Nature Communications, 2017, 8, 15456.	12.8	23
16	Caspase-3 controls AML1-ETO–driven leukemogenesis via autophagy modulation in a ULK1-dependent manner. Blood, 2017, 129, 2782-2792.	1.4	39
17	Differential role of Id1 in MLL-AF9–driven leukemia based on cell of origin. Blood, 2016, 127, 2322-2326.	1.4	15
18	Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles. Journal of Experimental Medicine, 2016, 213, 25-34.	8.5	25

Lan Wang

#	Article	IF	CITATIONS
19	The Role of Histone Acetyltransferases in Normal and Malignant Hematopoiesis. Frontiers in Oncology, 2015, 5, 108.	2.8	97
20	PARP inhibitors: a treatment option for AML?. Nature Medicine, 2015, 21, 1393-1394.	30.7	10
21	A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis. Nature, 2013, 500, 93-97.	27.8	134
22	PRMT4 Blocks Myeloid Differentiation by Assembling a Methyl-RUNX1-Dependent Repressor Complex. Cell Reports, 2013, 5, 1625-1638.	6.4	77