
Clint Sprott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/963866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructing conditional symmetry in symmetric chaotic systems. Chaos, Solitons and Fractals, 2022, 155, 111723.	5.1	26
2	Quantifying the robustness of a chaotic system. Chaos, 2022, 32, 033124.	2.5	2
3	The Butterfly Effect in Primary Visual Cortex. IEEE Transactions on Computers, 2022, 71, 2803-2815.	3.4	5
4	Effects of Amplitude, Maximal Lyapunov Exponent, and Kaplan–Yorke Dimension of Dynamical Oscillators on Master Stability Function. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	0
5	A simple memristive jerk system. IET Circuits, Devices and Systems, 2021, 15, 388-392.	1.4	15
6	Coexisting Infinite Equilibria and Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2130014.	1.7	33
7	Multi-Stability Detection in Chaotic Systems. Emergence, Complexity and Computation, 2021, , 377-396.	0.3	Ο
8	A Chaotic Circuit for Producing Gaussian Random Numbers. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050116.	1.7	6
9	Hidden Attractors with Conditional Symmetry. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030042.	1.7	19
10	Time-Reversible Chaotic System with Conditional Symmetry. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050067.	1.7	5
11	A chaotic circuit based on a physical memristor. Chaos, Solitons and Fractals, 2020, 138, 109990.	5.1	68
12	Variants of the Nosé–Hoover oscillator. European Physical Journal: Special Topics, 2020, 229, 963-971.	2.6	3
13	Polarity balance for attractor self-reproducing. Chaos, 2020, 30, 063144.	2.5	14
14	Infinite lattice of hyperchaotic strange attractors. Chaos, Solitons and Fractals, 2018, 109, 76-82.	5.1	50
15	An infinite 3-D quasiperiodic lattice of chaotic attractors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 581-587.	2.1	109
16	Constructing Infinitely Many Attractors in a Programmable Chaotic Circuit. IEEE Access, 2018, 6, 29003-29012.	4.2	78
17	Offset Boosting for Breeding Conditional Symmetry. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850163.	1.7	65
18	A symmetric pair of hyperchaotic attractors. International Journal of Circuit Theory and Applications, 2018, 46, 2434-2443.	2.0	7

#	Article	IF	CITATIONS
19	Simplest chaotic system with a hyperbolic sine and its applications in DCSK scheme. IET Communications, 2018, 12, 809-815.	2.2	21
20	Comment on "A hidden chaotic attractor in the classical Lorenz system― Chaos, Solitons and Fractals, 2018, 113, 261-262.	5.1	16
21	Predicting tipping points of dynamical systems during a period-doubling route to chaos. Chaos, 2018, 28, 073102.	2.5	40
22	A chaotic model of migraine headache considering the dynamical transitions of this cyclic disease. Europhysics Letters, 2018, 123, 10006.	2.0	7
23	Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal. Journal of Voice, 2017, 31, 16-23.	1.5	18
24	Can Lyapunov exponent predict critical transitions in biological systems?. Nonlinear Dynamics, 2017, 88, 1493-1500.	5.2	40
25	Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo. Chaos, 2017, 27, 033101.	2.5	147
26	Are Perpetual Points Sufficient for Locating Hidden Attractors?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750037.	1.7	53
27	Sentiment-driven limit cycles and chaos. Journal of Evolutionary Economics, 2017, 27, 729-760.	1.7	8
28	Categorizing Chaotic Flows from the Viewpoint of Fixed Points and Perpetual Points. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750023.	1.7	31
29	Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730008.	1.7	79
30	Synchronization of two Rössler systems with switching coupling. Nonlinear Dynamics, 2017, 88, 673-683.	5.2	36
31	How to Bridge Attractors and Repellors. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750149.	1.7	15
32	Infinite Multistability in a Self-Reproducing Chaotic System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750160.	1.7	152
33	A new chaotic oscillator with free control. Chaos, 2017, 27, 083101.	2.5	78
34	Harmonic Oscillators with Nonlinear Damping. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730037.	1.7	16
35	Modeling of epilepsy based on chaotic artificial neural network. Chaos, Solitons and Fractals, 2017, 105, 150-156.	5.1	55
36	An infinite 2-D lattice of strange attractors. Nonlinear Dynamics, 2017, 89, 2629-2639.	5.2	94

#	Article	IF	CITATIONS
37	Constructing chaotic systems with conditional symmetry. Nonlinear Dynamics, 2017, 87, 1351-1358.	5.2	113
38	Asymmetric Bistability in the R"{0}ssler System. Acta Physica Polonica B, 2017, 48, 97.	0.8	37
39	Amplitude-phase control of a novel chaotic attractor. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24, 1-11.	1.4	27
40	Crisis in Amplitude Control Hides in Multistability. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650233.	1.7	30
41	Adaptive Runge–Kutta integration for stiff systems: Comparing Nosé and Nosé–Hoover dynamics for the harmonic oscillator. American Journal of Physics, 2016, 84, 786-794.	0.7	12
42	Variable-boostable chaotic flows. Optik, 2016, 127, 10389-10398.	2.9	175
43	Simple Chaotic Flow with Circle and Square Equilibrium. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650137.	1.7	97
44	Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dynamics, 2016, 86, 1349-1358.	5.2	126
45	Nonequilibrium systems: hard disks and harmonic oscillators near and far from equilibrium. Molecular Simulation, 2016, 42, 1300-1316.	2.0	16
46	Simple Chaotic Flows with a Curve of Equilibria. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630034.	1.7	99
47	Dynamics at Infinity, Degenerate Hopf and Zero-Hopf Bifurcation for Kingni–Jafari System with Hidden Attractors. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650125.	1.7	45
48	The Equivalence of Dissipation from Gibbs' Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650089.	1.7	16
49	Simple Chaotic Hyperjerk System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650189.	1.7	70
50	Ergodicity of a singly-thermostated harmonic oscillator. Communications in Nonlinear Science and Numerical Simulation, 2016, 32, 234-240.	3.3	24
51	A Simple Chaotic Flow with a Plane of Equilibria. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650098.	1.7	149
52	NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 696-706.	2.1	17
53	Hypogenetic chaotic jerk flows. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1172-1177.	2.1	85
54	Nonideal Behavior of Analog Multipliers for Chaos Generation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 396-400.	3.0	22

#	Article	IF	CITATIONS
55	Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters. Nonlinear Dynamics, 2016, 83, 1109-1121.	5.2	44
56	The speed of reaction-diffusion fronts on fractals: testing the Campos-Méndez-Fort formula. ScienceAsia, 2016, 42, 33.	0.5	4
57	A novel four-wing strange attractor born in bistability. IEICE Electronics Express, 2015, 12, 20141116-20141116.	0.8	39
58	Limitation of Perpetual Points for Confirming Conservation in Dynamical Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550182.	1.7	41
59	Recent new examples of hidden attractors. European Physical Journal: Special Topics, 2015, 224, 1469-1476.	2.6	209
60	A Simple Chaotic Flow with a Continuously Adjustable Attractor Dimension. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530036.	1.7	29
61	Linearization of the Lorenz system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 888-893.	2.1	64
62	New Chaotic Regimes in the Lorenz and Chen Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550033.	1.7	14
63	Strange attractors with various equilibrium types. European Physical Journal: Special Topics, 2015, 224, 1409-1419.	2.6	80
64	Multistability in symmetric chaotic systems. European Physical Journal: Special Topics, 2015, 224, 1493-1506.	2.6	153
65	Symmetric Time-Reversible Flows with a Strange Attractor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550078.	1.7	37
66	A chaotic system with a single unstable node. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2030-2036.	2.1	69
67	Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2184-2187.	2.1	79
68	Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics. Molecular Physics, 2015, 113, 2863-2872.	1.7	22
69	Ergodic time-reversible chaos for Gibbs' canonical oscillator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2935-2940.	2.1	21
70	Constructing Chaotic Systems with Total Amplitude Control. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530025.	1.7	112
71	Classifying and quantifying basins of attraction. Chaos, 2015, 25, 083101.	2.5	63
72	A chaotic model of sustaining attention problem in attention deficit disorder. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 174-185.	3.3	60

#	Article	IF	CITATIONS
73	A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 469-481.	3.3	27
74	Coexisting Hidden Attractors in a 4-D Simplified Lorenz System. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450034.	1.7	238
75	Simplest Chaotic Flows with Involutional Symmetries. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450009.	1.7	72
76	Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450010.	1.7	78
77	A New Piecewise Linear Hyperchaotic Circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61, 977-981.	3.0	100
78	Finding coexisting attractors using amplitude control. Nonlinear Dynamics, 2014, 78, 2059-2064.	5.2	79
79	Comment on "How to obtain extreme multistability in coupled dynamical systems― Physical Review E, 2014, 89, 066901.	2.1	21
80	A chaotic viewpoint on noise reduction from respiratory sounds. Biomedical Signal Processing and Control, 2014, 10, 245-249.	5.7	25
81	A dynamical system with a strange attractor and invariant tori. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1361-1363.	2.1	60
82	Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized Nosé-Hoover oscillators with a temperature gradient. Physical Review E, 2014, 89, 042914.	2.1	53
83	Chaotic flows with a single nonquadratic term. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 178-183.	2.1	113
84	Multistability in the Lorenz System: A Broken Butterfly. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450131.	1.7	163
85	Bistability in a hyperchaotic system with a line equilibrium. Journal of Experimental and Theoretical Physics, 2014, 118, 494-500.	0.9	81
86	When Two Dual Chaotic Systems Shake Hands. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450086.	1.7	11
87	Extensions in dynamic models of happiness: effect of memory. International Journal of Happiness and Development, 2014, 1, 344.	0.1	19
88	Amplitude control approach for chaotic signals. Nonlinear Dynamics, 2013, 73, 1335-1341.	5.2	114
89	Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dynamics, 2013, 73, 1495-1505.	5.2	108
90	COEXISTENCE OF POINT, PERIODIC AND STRANGE ATTRACTORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350093.	1.7	150

#	Article	IF	CITATIONS
91	SIMPLEST 3D CONTINUOUS-TIME QUADRATIC SYSTEMS AS CANDIDATES FOR GENERATING MULTISCROLL CHAOTIC ATTRACTORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350120.	1.7	11
92	Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 2013, 57, 79-84.	5.1	460
93	Elementary quadratic chaotic flows with no equilibria. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 699-702.	2.1	422
94	Evaluating Lyapunov exponent spectra with neural networks. Chaos, Solitons and Fractals, 2013, 51, 13-21.	5.1	33
95	SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350188.	1.7	307
96	A RIGOROUS DETERMINATION OF THE OVERALL PERIOD IN THE STRUCTURE OF A CHAOTIC ATTRACTOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350046.	1.7	2
97	ABOUT UNIVERSAL BASINS OF ATTRACTION IN HIGH-DIMENSIONAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350197.	1.7	3
98	MULTISTABILITY IN A BUTTERFLY FLOW. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350199.	1.7	74
99	Is chaos good for learning?. Nonlinear Dynamics, Psychology, and Life Sciences, 2013, 17, 223-32.	0.2	5
100	Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 2012, 70, 1549-1561.	5.2	67
101	Boundedness of Certain Forms of Jerky Dynamics. Qualitative Theory of Dynamical Systems, 2012, 11, 199-213.	1.7	7
102	Hyperbolification of dynamical systems: The case of continuous-time systems. Journal of Experimental and Theoretical Physics, 2012, 115, 356-360.	0.9	2
103	Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dynamics, 2012, 69, 1383-1391.	5.2	51
104	Non-existence of Shilnikov chaos in continuous-time systems. Applied Mathematics and Mechanics (English Edition), 2012, 33, 371-374.	3.6	9
105	Spatiotemporal chaos in Easter Island ecology. Nonlinear Dynamics, Psychology, and Life Sciences, 2012, 16, 387-95.	0.2	0
106	A New Chaotic Jerk Circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58, 240-243.	3.0	154
107	Chaotifying 2-D piecewise-linear maps via a piecewise-linear controller function. Nonlinear Oscillations, 2011, 13, 352-360.	0.1	3
108	About the boundedness of 3-D continuous-time quadratic systems. Nonlinear Oscillations, 2011, 13, 550-557.	0.1	0

#	Article	IF	CITATIONS
109	Neural network method for determining embedding dimension of a time series. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3294-3302.	3.3	47
110	Generalization of the simplest autonomous chaotic system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1445-1450.	2.1	65
111	How to Transform a Type of Chaos in Dynamical Systems?. World Scientific Series on Nonlinear Science, Series B, 2011, , 231-252.	0.2	0
112	ROBUSTIFICATION OF CHAOS IN 2D MAPS. International Journal of Modeling, Simulation, and Scientific Computing, 2011, 14, 817-827.	1.4	5
113	ON THE DYNAMICS OF A NEW SIMPLE 2-D RATIONAL DISCRETE MAPPING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 155-160.	1.7	16
114	DYNAMIC PATTERNS OF POSTURAL FLUCTUATIONS DURING QUIET STANDING: A RECURRENCE QUANTIFICATION APPROACH. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 1163-1172.	1.7	17
115	A PROPOSED STANDARD FOR THE PUBLICATION OF NEW CHAOTIC SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 2391-2394.	1.7	192
116	Chaos in easter island ecology. Nonlinear Dynamics, Psychology, and Life Sciences, 2011, 15, 445-54.	0.2	5
117	A new simple 2-D piecewise linear map. Journal of Systems Science and Complexity, 2010, 23, 379-389.	2.8	7
118	PERIODICALLY FORCED CHAOTIC SYSTEM WITH SIGNUM NONLINEARITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1499-1507.	1.7	35
119	GENERATING 3-SCROLL ATTRACTORS FROM ONE CHUA CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 135-144.	1.7	10
120	IDENTIFICATION OF DYNAMIC PATTERNS OF BODY SWAY DURING QUIET STANDING: IS IT A NONLINEAR PROCESS?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1269-1278.	1.7	9
121	SIMPLE CONSERVATIVE, AUTONOMOUS, SECOND-ORDER CHAOTIC COMPLEX VARIABLE SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 697-702.	1.7	5
122	BIFURCATIONS AND CHAOS IN FRACTIONAL-ORDER SIMPLIFIED LORENZ SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1209-1219.	1.7	94
123	Simple Autonomous Chaotic Circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57, 730-734.	3.0	102
124	DYNAMICS OF A SIMPLIFIED LORENZ SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 1357-1366.	1.7	61
125	THE DISCRETE HYPERCHAOTIC DOUBLE SCROLL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 1023-1027.	1.7	12
126	A search for the simplest chaotic partial differential equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2717-2721.	2.1	23

#	Article	IF	CITATIONS
127	Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian. Frontiers of Physics in China, 2009, 4, 111-121.	1.0	5
128	Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings. Frontiers of Physics in China, 2009, 4, 549-555.	1.0	4
129	Anti-Newtonian dynamics. American Journal of Physics, 2009, 77, 783-787.	0.7	11
130	Simplifications of the Lorenz attractor. Nonlinear Dynamics, Psychology, and Life Sciences, 2009, 13, 271-8.	0.2	7
131	On the robustness of chaos in dynamical systems: Theories and applications. Frontiers of Physics in China, 2008, 3, 195-204.	1.0	26
132	The effect of modulating a parameter in the logistic map. Chaos, 2008, 18, 023119.	2.5	21
133	A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 1567-1577.	1.7	21
134	Chaotic dynamics on large networks. Chaos, 2008, 18, 023135.	2.5	24
135	Simple models of complex chaotic systems. American Journal of Physics, 2008, 76, 474-480.	0.7	13
136	A simple diffusion model showing anomalous scaling. Physics of Plasmas, 2008, 15, 082308.	1.9	4
137	Predator-Prey Dynamics for Rabbits, Trees, and Romance. , 2008, , 231-238.		2
138	Biophilic fractals and the visual journey of organic screen-savers. Nonlinear Dynamics, Psychology, and Life Sciences, 2008, 12, 117-29.	0.2	9
139	LABYRINTH CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2097-2108.	1.7	37
140	Hyperlabyrinth chaos: From chaotic walks to spatiotemporal chaos. Chaos, 2007, 17, 023110.	2.5	12
141	Maximally complex simple attractors. Chaos, 2007, 17, 033124.	2.5	32
142	A simple chaotic delay differential equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 397-402.	2.1	105
143	Complex spatiotemporal dynamics in Lotka–Volterra ring systems. Ecological Complexity, 2006, 3, 140-147.	2.9	7
144	Chaos in low-dimensional Lotka–Volterra models of competition. Nonlinearity, 2006, 19, 2391-2404.	1.4	112

#	Article	IF	CITATIONS
145	Chaotic hyperjerk systems. Chaos, Solitons and Fractals, 2006, 28, 739-746.	5.1	143
146	Routes to chaos in high-dimensional dynamical systems: A qualitative numerical study. Physica D: Nonlinear Phenomena, 2006, 223, 194-207.	2.8	26
147	Probability of Local Bifurcation Type from a Fixed Point: A Random Matrix Perspective. Journal of Statistical Physics, 2006, 125, 885-921.	1.2	3
148	Structural stability and hyperbolicity violation in high-dimensional dynamical systems. Nonlinearity, 2006, 19, 1801-1847.	1.4	26
149	A comparison of correlation and Lyapunov dimensions. Physica D: Nonlinear Phenomena, 2005, 200, 156-164.	2.8	68
150	Coexistence and chaos in complex ecologies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 335, 207-212.	2.1	37
151	A simple spatiotemporal chaotic Lotka–Volterra model. Chaos, Solitons and Fractals, 2005, 26, 1035-1043.	5.1	33
152	Dynamical models of happiness. Nonlinear Dynamics, Psychology, and Life Sciences, 2005, 9, 23-36.	0.2	34
153	Precision measurements of a simple chaotic circuit. American Journal of Physics, 2004, 72, 503-509.	0.7	46
154	CHAOS IN A NONLINEAR ANALOG COMPUTER. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 2867-2873.	1.7	12
155	A method for approximating missing data in spatial patterns. Computers and Graphics, 2004, 28, 113-117.	2.5	6
156	Competition with evolution in ecology and finance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 325, 329-333.	2.1	42
157	Can a monkey with a computer create art?. Nonlinear Dynamics, Psychology, and Life Sciences, 2004, 8, 103-14.	0.2	5
158	Dynamical models of love. Nonlinear Dynamics, Psychology, and Life Sciences, 2004, 8, 303-14.	0.2	19
159	Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons and Fractals, 2003, 16, 339-351.	5.1	434
160	Comment on "A new class of exact solutions of the Vlasov equation―[Phys. Plasmas8, 5081 (2001)]. Physics of Plasmas, 2002, 9, 4093-4094.	1.9	1
161	On the synchronization of a class of electronic circuits that exhibit chaos. Chaos, Solitons and Fractals, 2002, 13, 1515-1521.	5.1	74
162	Self-organized criticality in forest-landscape evolution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 297, 267-271.	2.1	27

#	Article	lF	CITATIONS
163	Simplest driven conservative chaotic oscillator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 291, 385-388.	2.1	32
164	IMPROVED CORRELATION DIMENSION CALCULATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 1865-1880.	1.7	70
165	Can a Computer Produce and Critique Art?. Leonardo, 2001, 34, 369-369.	0.3	2
166	Chaos and the limits of predictability for the solar-wind-driven magnetosphere–ionosphere system. Physics of Plasmas, 2001, 8, 2946-2952.	1.9	28
167	A new class of chaotic circuit. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 19-23.	2.1	357
168	Simple chaotic systems and circuits. American Journal of Physics, 2000, 68, 758-763.	0.7	343
169	Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. Physical Review E, 1999, 59, 5313-5324.	2.1	57
170	Controlling chaos in a high dimensional system with periodic parametric perturbations. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 254, 275-278.	2.1	21
171	Elementary chaotic flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259, 240-245.	2.1	88
172	Artificial neural net attractors. Computers and Graphics, 1998, 22, 143-149.	2.5	1
173	Routes to Chaos in Neural Networks with Random Weights. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 08, 1463-1478.	1.7	28
174	Some simple chaotic jerk functions. American Journal of Physics, 1997, 65, 537-543.	0.7	298
175	Simplest dissipative chaotic flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 228, 271-274.	2.1	244
176	Strange attractor symmetric icons. Computers and Graphics, 1996, 20, 325-332.	2.5	12
177	Transport reduction by current profile control in the reversedâ€field pinch. Physics of Plasmas, 1995, 2, 2440-2446.	1.9	22
178	Chaos in reversed-field-pinch plasma simulation and experiment. Physical Review E, 1994, 49, 2291-2301.	2.1	7
179	Predicting the dimension of strange attractors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 192, 355-360.	2.1	9
180	Some simple chaotic flows. Physical Review E, 1994, 50, R647-R650.	2.1	971

#	Article	IF	CITATIONS
181	Automatic generation of iterated function systems. Computers and Graphics, 1994, 18, 417-425.	2.5	28
182	How common is chaos?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 173, 21-24.	2.1	26
183	Automatic generation of strange attractors. Computers and Graphics, 1993, 17, 325-332.	2.5	79
184	Turbulent transport in the Madison Symmetric Torus reversedâ€field pinch. Physics of Fluids B, 1992, 4, 2136-2141.	1.7	26
185	Simple Programs Create 3-D Images. Computers in Physics, 1992, 6, 132.	0.5	7
186	Extraction of dynamical equations from chaotic data. Physica D: Nonlinear Phenomena, 1992, 58, 251-259.	2.8	40
187	Modified polynomial function model for reversedâ€field pinches. Physics of Fluids B, 1991, 3, 1225-1231.	1.7	12
188	The Madison Symmetric Torus. Fusion Science and Technology, 1991, 19, 131-139.	0.6	323
189	Physics to the people!. Physics Teacher, 1991, 29, 212-213.	0.3	1
190	First results from the Madison Symmetric Torus reversed field pinch. Physics of Fluids B, 1990, 2, 1367-1371.	1.7	30
191	Studies of a reversed field pinch in a poloidal divertor configuration. Nuclear Fusion, 1989, 29, 104-108.	3.5	11
192	Electrical circuit modeling of reversed field pinches. Physics of Fluids, 1988, 31, 2266.	1.4	45
193	Studies of large, non-circular, reversed field pinch discharges. Nuclear Fusion, 1987, 27, 1795-1803.	3.5	9
194	Diffusion of magnetic fields into conductors of nonuniform resistivity. Journal of Applied Physics, 1987, 61, 817-821.	2.5	0
195	Equilibrium studies of a poloidal divertor pinch with a reversed toroidal field. Physics of Fluids, 1987, 30, 2155.	1.4	8
196	Trapping of gunâ€injected plasma by a tokamak. Physics of Fluids, 1987, 30, 2877-2884.	1.4	9
197	Electrical circuit modeling of conductors with skin effect. Journal of Applied Physics, 1986, 60, 475-481.	2.5	7
198	Trapping of Gun-Injected Plasma by a Tokamak. Physical Review Letters, 1986, 57, 333-336.	7.8	16

#	Article	IF	CITATIONS
199	Multipole and tokamak research at the University of Wisconsin. Nuclear Fusion, 1985, 25, 1179-1182.	3.5	5
200	Ion cyclotron resonance heating in the Wisconsin levitated octupole. Plasma Physics and Controlled Fusion, 1984, 26, 589-602.	2.1	2
201	Experimental Observation of the Shear Alfvén Resonance in a Tokamak. Physical Review Letters, 1984, 53, 1559-1562.	7.8	21
202	Plasma heating with strong poloidal Ohmic currents. Physics of Fluids, 1983, 26, 3435.	1.4	1
203	Protection of large capacitor banks. Review of Scientific Instruments, 1983, 54, 896-897.	1.3	1
204	High power heating in the ion cyclotron range of frequencies in the Wisconsin Tokapole II. Plasma Physics, 1981, 23, 679-691.	0.9	12
205	Tokamak start-up with electron-cyclotron heating. Nuclear Fusion, 1981, 21, 1483-1487.	3.5	25
206	Initial results from the Tokapole-II poloidal divertor device. Nuclear Fusion, 1979, 19, 1509-1518.	3.5	23
207	Experimental Study of Axisymmetric Instability of Inverse-Dee and Square Tokamak Equilibria. Physical Review Letters, 1979, 43, 36-39.	7.8	7
208	Experimental test of the feasibility of heating tokamaks by gun injection. Nuclear Fusion, 1978, 18, 1595-1598.	3.5	4
209	Experimental demonstration of E×B plasma divertor. Physics of Fluids, 1978, 21, 2342.	1.4	11
210	lon cyclotron resonance heating in the Wisconsin supported toroidal octupole. Plasma Physics, 1977, 19, 945-957.	0.9	7
211	Numerical Model of Plasma Confinement. IEEE Transactions on Plasma Science, 1976, 4, 6-10.	1.3	4
212	Ion Cyclotron-Resonance Heating in a Toroidal Octupole. Physical Review Letters, 1975, 34, 1607-1609.	7.8	3
213	Measurements of electron-cyclotron heating rates. Physics of Fluids, 1974, 17, 810.	1.4	7
214	Digital plasma density determining device. Review of Scientific Instruments, 1974, 45, 947-949.	1.3	0
215	Effect of magnetic field errors on confinement in bumpy tori. Physics of Fluids, 1973, 16, 1157.	1.4	3
216	High-β plasma behaviour in a canted mirror. Nuclear Fusion, 1973, 13, 693-701.	3.5	6

#	Article	IF	CITATIONS
217	Off-resonance heating of mirror confined plasmas. Plasma Physics, 1972, 14, 269-274.	0.9	9
218	The use of synchrotron radiation to provide ionization of wall-originated impurities in a thermonuclear reactor. Nuclear Fusion, 1972, 12, 126-128.	3.5	0
219	Numerical Calculations of Off-Resonance Heating. Physics of Fluids, 1972, 15, 2247.	1.4	5
220	Computer Calculations of Electron Cyclotron Heating in a Nonuniform Magnetic Field. Physics of Fluids, 1971, 14, 2703.	1.4	21
221	Electron Cyclotron Heating in Toroidal Octupoles. Physics of Fluids, 1971, 14, 1795.	1.4	30
222	Behavior of a Cold Ion Plasma in a Toroidal Octupole. Physics of Fluids, 1970, 13, 1626.	1.4	5
223	Double Vortex Flows in Plasmas Axially Traversing Multipole Magnetic Fields. Physics of Fluids, 1969, 12, 707.	1.4	12
224	Admittance Probe Method of Measuring Time Resolved Plasma Electron Temperatures. Review of Scientific Instruments, 1968, 39, 1569-1570.	1.3	13
225	Influence of a Toroidal Field on Plasma Confined in a Toroidal Octupole. Physics of Fluids, 1968, 11, 1115.	1.4	21
226	Wide Band Electrostatic Probes for Use in Tenuous Plasmas. Review of Scientific Instruments, 1966, 37, 897-900.	1.3	12