Raja Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9637821/publications.pdf Version: 2024-02-01

RAIA CHOCH

#	Article	IF	CITATIONS
1	The Effects of Crystallinity on Charge Transport and the Structure of Sequentially Processed F ₄ TCNQâ€Đoped Conjugated Polymer Films. Advanced Functional Materials, 2017, 27, 1702654.	14.9	190
2	Polaron Delocalization in Conjugated Polymer Films. Journal of Physical Chemistry C, 2016, 120, 11394-11406.	3.1	79
3	Sequential Doping Reveals the Importance of Amorphous Chain Rigidity in Charge Transport of Semi-Crystalline Polymers. Journal of Physical Chemistry Letters, 2017, 8, 4974-4980.	4.6	72
4	Spectral Signatures and Spatial Coherence of Bound and Unbound Polarons in P3HT Films: Theory Versus Experiment. Journal of Physical Chemistry C, 2018, 122, 18048-18060.	3.1	70
5	Excitons and Polarons in Organic Materials. Accounts of Chemical Research, 2020, 53, 2201-2211.	15.6	63
6	Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers. Chemistry of Materials, 2019, 31, 7033-7045.	6.7	39
7	Unraveling the Effect of Conformational and Electronic Disorder in the Charge Transport Processes of Semiconducting Polymers. Advanced Functional Materials, 2018, 28, 1804142.	14.9	34
8	Data-Driven Many-Body Models with Chemical Accuracy for CH ₄ /H ₂ O Mixtures. Journal of Physical Chemistry B, 2020, 124, 11207-11221.	2.6	28
9	Unraveling the effect of defects, domain size, and chemical doping on photophysics and charge transport in covalent organic frameworks. Chemical Science, 2021, 12, 8373-8384.	7.4	23
10	Understanding Bipolarons in Conjugated Polymers Using a Multiparticle Holstein Approach. Journal of Physical Chemistry C, 0, , .	3.1	14
11	Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases. Journal of Chemical Physics, 2022, 156, 104503.	3.0	12
12	Synthesis, structure, photocatalytic and magnetic properties of an oxo-bridged copper dimer. RSC Advances, 2014, 4, 21195-21200.	3.6	9
13	Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 9442-9448.	4.6	7
14	Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers. Advanced Electronic Materials, 2022, 8, .	5.1	7
15	The behavior of methane–water mixtures under elevated pressures from simulations using many-body potentials. Journal of Chemical Physics, 2022, 156, .	3.0	7
16	The effect of cluster size on the optical band gap energy of Zn-based metal–organic frameworks. Dalton Transactions, 2015, 44, 13464-13468.	3.3	6