Xiaoli Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9636716/publications.pdf Version: 2024-02-01

Χιλομ Ζηλης

#	Article	IF	CITATIONS
1	Mechanical power driven SPME-SERS ultra-fast detection of illegal additives in aquaculture water. RSC Advances, 2021, 11, 12893-12901.	3.6	1
2	Caramelized carbonaceous shell-coated γ-Fe2O3 as a magnetic solid-phase extraction sorbent for LC-MS/MS analysis of triphenylmethane dyes. Mikrochimica Acta, 2020, 187, 371.	5.0	12
3	AÂ3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequentÂSERS analysis of thiram. Mikrochimica Acta, 2019, 186, 458.	5.0	10
4	Recyclable silver nanoplate-decorated copper membranes for solid-phase extraction coupled with surface-enhanced Raman scattering detection. Analytical Methods, 2018, 10, 1353-1361.	2.7	2
5	Hydrophobic silver nanowire membrane for swabbing extraction and in situ SERS detection of polycyclic aromatic hydrocarbons on toys. Analytical Methods, 2017, 9, 1816-1824.	2.7	20
6	Au@Ag core–shell nanoparticles with a hidden internal reference promoted quantitative solid phase microextraction-surface enhanced Raman spectroscopy detection. RSC Advances, 2017, 7, 23866-23874.	3.6	14
7	Portable kit for high-throughput analysis of polycyclic aromatic hydrocarbons using surface enhanced Raman scattering after dispersive liquid-liquid microextraction. Talanta, 2017, 175, 495-500.	5.5	20
8	Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy. Analytica Chimica Acta, 2016, 923, 66-73.	5.4	44
9	Surface enhanced Raman spectroscopy hyphenated with surface microextraction for in-situ detection of polycyclic aromatic hydrocarbons on food contact materials. Talanta, 2016, 158, 322-329.	5.5	37
10	Multiplexed optical coding nanobeads and their application in single-molecule counting analysis for multiple gene expression analysis. Analytica Chimica Acta, 2015, 886, 123-132.	5.4	1
11	Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst, The, 2015, 140, 4668-4675.	3.5	47
12	Hydrophobic gold nanostructures via electrochemical deposition for sensitive SERS detection of persistent toxic substances. RSC Advances, 2015, 5, 13443-13450.	3.6	26
13	Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer. Analyst, The, 2015, 140, 2815-2822.	3.5	30
14	Simultaneous determination of naphthol isomers at poly(3-methylthiophene)-nano-Au modified electrode with the enhancement of surfactant. Materials Science and Engineering C, 2015, 53, 36-42.	7.3	32
15	Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination. Analytica Chimica Acta, 2015, 854, 122-128.	5.4	8
16	Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochimica Acta, 2014, 130, 253-260.	5.2	97
17	Electrochemical sensor for endocrine disruptor bisphenol A based on a glassy carbon electrode modified with silica and nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Analytical Methods, 2014, 6, 8604-8612.	2.7	30
18	Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochimica Acta, 2013, 112, 774-782.	5.2	93

XIAOLI ZHANG

#	Article	IF	CITATIONS
19	A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline. Journal of Solid State Electrochemistry, 2013, 17, 167-173.	2.5	41
20	Electrogenerated chemiluminescence sensor for glutathione with \$\$ Ruleft({bpy} ight)_3^{2+ } \$\$ -doped silica nanoparticles. Journal of Solid State Electrochemistry, 2013, 17, 795-803.	2.5	3
21	Signal amplification based on DNA hybridization–dehybridization reaction on the surface of magnet submicrobeads for ultrasensitive DNA detection. Analyst, The, 2012, 137, 4849.	3.5	7
22	Electrochemical detection of chloride at the multilayer nano-silver modified indium-tin oxide thin electrodes. Journal of Electroanalytical Chemistry, 2012, 665, 26-32.	3.8	14
23	Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. Journal of Electroanalytical Chemistry, 2012, 669, 35-41.	3.8	155
24	Nanocomposite of graphene based sensor for paraquat: Synergetic effect of nano-gold and ionic liquids on electrocatalysis. Analytical Methods, 2012, 4, 3974.	2.7	8
25	Nanocomposite of electrochemically reduced graphene oxide and gold nanoparticles enhanced electrochemilunescence of peroxydisulfate and its immunosensing abililty towards human IgG. Journal of Electroanalytical Chemistry, 2012, 686, 25-31.	3.8	25
26	Electrogenerated chemiluminescence sensor for formaldehyde based on Ru(bpy)32+-doped silica nanoparticles modified Au electrode. Materials Science and Engineering C, 2012, 32, 2169-2174.	7.3	14
27	Electrodeposition of CdSe quantum dots and its application to an electrochemiluminescence immunoassay for α-fetoprotein. Mikrochimica Acta, 2012, 178, 323-330.	5.0	20
28	Electrochemiluminescence DNA sensor based on Ru(bpy) 3 2+ -doped silica nanoparticle labeling and proximity-dependent surface hybridization assay. Journal of Solid State Electrochemistry, 2012, 16, 247-252.	2.5	14
29	Ultrasensitive electrochemiluminescence method for determination of DNA using Ru(bpy)32+-coated magnetic submicrobeads wrapped with carbon nanotubes. Electrochemistry Communications, 2011, 13, 1499-1501.	4.7	9
30	Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. Journal of Applied Electrochemistry, 2011, 41, 687-694.	2.9	162
31	Electrochemiluminescence immunoassay at a nanoporous gold leaf electrode and using CdTe quantun dots as labels. Mikrochimica Acta, 2011, 172, 285-290.	5.0	30
32	Determination of dopamine with improved sensitivity by exploiting an accumulation effect at a nano-gold electrode modified with poly(sulfosalicylic acid). Mikrochimica Acta, 2011, 174, 345-352.	5.0	8
33	DNA microspot assay using single-molecule detection and requiring 1.8 nL samples only. Mikrochimica Acta, 2011, 174, 201-206.	5.0	1
34	Electrochemiluminescence DNA Sensor Based on Hairpin Structure DNA as recognition element and Ru(bpy) ₃ ²⁺ â€doped silica Nanoparticles as Signalâ€Producing Compound. Electroanalysis, 2011, 23, 2693-2698.	2.9	12
35	Ultrasensitive Eletrogenerated Chemiluminescence Immunoassay by Magnetic Nanobead Amplification. Electroanalysis, 2010, 22, 333-337.	2.9	24
36	Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta, 2010, 80, 1737-1743.	5.5	56

XIAOLI ZHANG

#	ARTICLE	IF	CITATIONS
37	Simultaneous Voltammetry Determination of Dihydroxybenzene Isomers by Nanogold Modified Electrode. Electroanalysis, 2009, 21, 124-129.	2.9	64
38	Electrochemistry of thiol-capped CdTe quantum dots and its sensing application. Journal of Electroanalytical Chemistry, 2009, 625, 88-91.	3.8	29
39	Ultrasensitive electrochemical immunoassay based on counting single magnetic nanobead by a combination of nanobead amplification and enzyme amplification. Electrochemistry Communications, 2009, 11, 1457-1459.	4.7	6
40	Ultrasensitive Electrochemical DNA Assay Based on Counting of Single Magnetic Nanobeads by a Combination of DNA Amplification and Enzyme Amplification. Analytical Chemistry, 2009, 81, 1826-1832.	6.5	43
41	Highâ€ŧhroughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis, 2007, 28, 3966-3975.	2.4	23
42	Voltammetric study of the interaction of the ofloxacin–copper complex with DNA, and its analytical application. Mikrochimica Acta, 2007, 159, 65-70.	5.0	6
43	High-Throughput Single-Cell Analysis for Enzyme Activity without Cytolysis. Analytical Chemistry, 2006, 78, 3213-3220.	6.5	28
44	Determination of Trace Iron in KH2PO4 Crystal by Derivative Adsorption Chronopotentiometry. Mikrochimica Acta, 2004, 148, 55.	5.0	1
45	An Electrode-Separated Piezoelectric Sensor as a Surface Monitoring Technique for Anionic Surfactant Adsorption on Quartz Surface. Mikrochimica Acta, 2002, 138, 89-93.	5.0	8
46	Determination of Lysine in Nutrition Sample by Adsorption Voltammetry. Analytical Letters, 1994, 27, 613-623.	1.8	4
47	Determination of Trace Manganese by Adsorption Voltammetry. Analytical Letters, 1993, 26, 1711-1717.	1.8	16
48	Microdetermination of Molybdenum in Iron and Biological Samples by Adsorption Voltammetry. Analytical Letters, 1990, 23, 2233-2241.	1.8	5