Zhengwang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/963556/publications.pdf

Version: 2024-02-01

22 papers 494 citations

759233 12 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

695 citing authors

#	Article	IF	CITATIONS
1	Highly Sensitive Band Alignment of the Graphene/MoSi ₂ N ₄ Heterojunction via an External Electric Field. ACS Applied Electronic Materials, 2022, 4, 2897-2905.	4.3	25
2	Visualizing discrete Fermi surfaces and possible nodal-line to Weyl state evolution in ZrSiTe. Npj Quantum Materials, 2022, 7, .	5.2	2
3	Non-noble plasmonic MoO2 as photosensitizer of 1D TiO2 nanorods for enhancing visible-light photoelectrochemical performance. Surfaces and Interfaces, 2022, 31, 102082.	3.0	4
4	Enhancing the Visible Light Photoelectrochemical Water Splitting of TiO ₂ Photoanode <i>via</i> a p–n Heterojunction and the Plasmonic Effect. Journal of Physical Chemistry C, 2022, 126, 11510-11517.	3.1	10
5	Formation of Plasmonic Polarons in Highly Electron-Doped Anatase TiO2. Nano Letters, 2021, 21, 430-436.	9.1	9
6	An Unassisted Tandem Photoelectrochemical Cell Based on p- and n-Cu2O Photoelectrodes. Catalysis Letters, 2021, 151, 1976-1983.	2.6	12
7	Promising CoFe-NiOOH Ternary Polymetallic Cocatalyst for BiVO ₄ -Based Photoanodes in Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 3842-3850.	5.1	31
8	Searching for a promising topological Dirac nodal-line semimetal by angle resolved photoemission spectroscopy. New Journal of Physics, 2021, 23, 123026.	2.9	5
9	CoNiO ₂ as a novel water oxidation cocatalyst to enhance PEC water splitting performance of BiVO ₄ . Chemical Communications, 2020, 56, 9158-9161.	4.1	46
10	Defect and interlayer coupling tuned quasiparticle scattering in 2D disordered Mo2C superconducting microcrystals. Journal Physics D: Applied Physics, 2020, 53, 434002.	2.8	1
11	Strongly Compressed Few-Layered SnSe ₂ Films Grown on a SrTiO ₃ Substrate: The Coexistence of Charge Ordering and Enhanced Interfacial Superconductivity. Nano Letters, 2019, 19, 5304-5312.	9.1	32
12	Visualizing Dirac nodal-line band structure of topological semimetal ZrGeSe by ARPES. APL Materials, $2019, 7, .$	5.1	13
13	Layer-Stacking, Defects, and Robust Superconductivity on the Mo-Terminated Surface of Ultrathin Mo ₂ C Flakes Grown by CVD. Nano Letters, 2019, 19, 3327-3335.	9.1	21
14	Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Applied Physics Letters, 2019, 114 , .	3.3	15
15	Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film. Chinese Journal of Chemical Physics, 2018, 31, 71-76.	1.3	4
16	Understanding the Intrinsic Chemical Activity of Anatase TiO $<$ sub $<$ 2 $<$ /sub $>$ (001)-(1 \tilde{A} — 4) Surface. Journal of Physical Chemistry C, 2017, 121, 1272-1282.	3.1	25
17	Electronic properties of Cr-N codoped rutile TiO2(110) thin films. Surface Science, 2017, 666, 84-89.	1.9	10
18	Identifying the Site-Dependent Photoactivity of Anatase TiO (sub) $2 < sub$ (001)-(1 \tilde{A} -4) Surface. Journal of Physical Chemistry C, 2017, 121, 19930-19937.	3.1	14

#	Article	IF	CITATIONS
19	Detecting the Photoactivity of Anatase TiO (sub) 2 (sub) (001)-(1 \tilde{A} —4) Surface by Formaldehyde. Journal of Physical Chemistry C, 2017, 121, 17289-17296.	3.1	13
20	Characterization of Cr–N codoped anatase TiO2(001) thin films epitaxially grown on SrTiO3(001) substrate. Surface Science, 2013, 616, 93-99.	1.9	16
21	Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nature Communications, 2013, 4, 2214.	12.8	184
22	The valence conversion mechanism for Moâ€doped VO ₂ films with enhanced thermochromic properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	2