James G Granneman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/963530/publications.pdf Version: 2024-02-01

		61984	56724
91	7,494	43	83
papers	citations	h-index	g-index
114	114	114	8945
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	REEP6 knockout leads to defective β-adrenergic signaling in adipocytes and promotes obesity-related metabolic dysfunction Metabolism: Clinical and Experimental, 2022, 130, 155159.	3.4	11
2	Fluorescent and Luminescent Methods to Detect Lipolysis. Methods in Molecular Biology, 2022, 2448, 97-106.	0.9	1
3	Structural and functional insights into ABHD5, a ligand-regulated lipase co-activator. Scientific Reports, 2022, 12, 2565.	3.3	8
4	Adipocyte lysoplasmalogenase TMEM86A regulates plasmalogen homeostasis and protein kinase A-dependent energy metabolism. Nature Communications, 2022, 13, .	12.8	12
5	Lipolysis regulates major transcriptional programs in brown adipocytes. Nature Communications, 2022, 13, .	12.8	16
6	ABHD5 suppresses cancer cell anabolism through lipolysis-dependent activation of the AMPK/mTORC1 pathway. Journal of Biological Chemistry, 2021, 296, 100104.	3.4	14
7	Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control. Journal of Lipid Research, 2021, 62, 100016.	4.2	23
8	STK3/STK4 signalling in adipocytes regulates mitophagy and energy expenditure. Nature Metabolism, 2021, 3, 428-441.	11.9	27
9	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	28.9	68
10	Leucine zipper transcription factor-like 1 (LZTFL1), an intraflagellar transporter protein 27 (IFT27) associated protein, is required for normal sperm function and male fertility. Developmental Biology, 2021, 477, 164-176.	2.0	11
11	Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Molecular Metabolism, 2021, 53, 101307.	6.5	14
12	Adipocyte-specific Beclin1 deletion impairs lipolysis and mitochondrial integrity in adipose tissue. Molecular Metabolism, 2020, 39, 101005.	6.5	34
13	Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochemical Journal, 2020, 477, 583-600.	3.7	58
14	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	1.8	29
15	Prostate Tumor Cell–Derived IL1β Induces an Inflammatory Phenotype in Bone Marrow Adipocytes and Reduces Sensitivity to Docetaxel via Lipolysis-Dependent Mechanisms. Molecular Cancer Research, 2019, 17, 2508-2521.	3.4	32
16	Genetically-encoded sensors to detect fatty acid production and trafficking. Molecular Metabolism, 2019, 29, 55-64.	6.5	11
17	MicroRNA-10a-5p regulates macrophage polarization and promotes therapeutic adipose tissue remodeling. Molecular Metabolism, 2019, 29, 86-98.	6.5	40
18	Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nature Metabolism, 2019, 1, 560-569.	11.9	79

#	Article	IF	CITATIONS
19	Adipocyte lipolysis affects Perilipin 5 and cristae organization at the cardiac lipid droplet-mitochondrial interface. Scientific Reports, 2019, 9, 4734.	3.3	29
20	Jak-TGFÎ ² cross-talk links transient adipose tissue inflammation to beige adipogenesis. Science Signaling, 2018, 11, .	3.6	41
21	SERCA2b Cycles Its Way to UCP1-Independent Thermogenesis in Beige Fat. Cell Metabolism, 2018, 27, 7-9.	16.2	21
22	Vacuolar protein sorting 13C is a novel lipid droplet protein that inhibits lipolysis in brown adipocytes. Molecular Metabolism, 2018, 7, 57-70.	6.5	24
23	Deciphering the Role of Lipid Droplets in Cardiovascular Disease. Circulation, 2018, 138, 305-315.	1.6	89
24	Deconstructing Adipogenesis Induced by β3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metabolism, 2018, 28, 300-309.e4.	16.2	250
25	FGF21 does not require adipocyte AMP-activated protein kinase (AMPK) or the phosphorylation of acetyl-CoA carboxylase (ACC) to mediate improvements in whole-body glucose homeostasis. Molecular Metabolism, 2017, 6, 471-481.	6.5	40
26	Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Scientific Reports, 2017, 7, 39794.	3.3	53
27	Loss of ABHD5 promotes the aggressiveness of prostate cancer cells. Scientific Reports, 2017, 7, 13021.	3.3	29
28	Novel Pharmacological Probes Reveal ABHD5 as a Locus of Lipolysis Control in White and Brown Adipocytes. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 367-376.	2.5	23
29	Connexin 43 is required for the maintenance of mitochondrial integrity in brown adipose tissue. Scientific Reports, 2017, 7, 7159.	3.3	46
30	Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults. Journal of Nuclear Medicine, 2017, 58, 799-806.	5.0	39
31	The secretion and biological function of tumor suppressor maspin as an exosome cargo protein. Oncotarget, 2017, 8, 8043-8056.	1.8	22
32	Lipid droplet biology and evolution illuminated by the characterization of a novel perilipin in teleost fish. ELife, 2017, 6, .	6.0	47
33	Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metabolism, 2016, 24, 118-129.	16.2	259
34	Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biology of Sex Differences, 2016, 7, 67.	4.1	95
35	Characterization of Eicosanoids Produced by Adipocyte Lipolysis. Journal of Biological Chemistry, 2016, 291, 16001-16010.	3.4	37
36	Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R55-R65.	1.8	77

#	Article	IF	CITATIONS
37	Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte, 2016, 5, 119-129.	2.8	58
38	Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metabolism, 2015, 22, 851-860.	16.2	87
39	Cellular origins of coldâ€induced brown adipocytes in adult mice. FASEB Journal, 2015, 29, 286-299.	0.5	242
40	Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E793-E799.	3.5	67
41	Exploring the activated adipogenic niche: Interactions of macrophages and adipocyte progenitors. Cell Cycle, 2014, 13, 184-190.	2.6	37
42	Use of Fluorescence Microscopy to Probe Intracellular Lipolysis. Methods in Enzymology, 2014, 538, 263-278.	1.0	3
43	Adipocyte Lipolysis-stimulated Interleukin-6 Production Requires Sphingosine Kinase 1 Activity. Journal of Biological Chemistry, 2014, 289, 32178-32185.	3.4	60
44	Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic l²3-adrenergic receptor activation. Journal of Lipid Research, 2014, 55, 2276-2286.	4.2	230
45	Adipose tissue plasticity from WAT to BAT and in between. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 358-369.	3.8	166
46	Identification of an Adipogenic Niche for Adipose Tissue Remodeling and Restoration. Cell Metabolism, 2013, 18, 355-367.	16.2	229
47	Analysis and correction of crosstalk effects in pathway analysis. Genome Research, 2013, 23, 1885-1893.	5.5	123
48	¹⁵ O PET Measurement of Blood Flow and Oxygen Consumption in Cold-Activated Human Brown Fat. Journal of Nuclear Medicine, 2013, 54, 523-531.	5.0	221
49	Seeking the source of adipocytes in adult white adipose tissues. Adipocyte, 2012, 1, 230-236.	2.8	21
50	Lipolytic Products Activate Peroxisome Proliferator-activated Receptor (PPAR) α and δ in Brown Adipocytes to Match Fatty Acid Oxidation with Supply. Journal of Biological Chemistry, 2012, 287, 25038-25048.	3.4	168
51	InÂVivo Identification of Bipotential Adipocyte Progenitors Recruited by β3-Adrenoceptor Activation and High-Fat Feeding. Cell Metabolism, 2012, 15, 480-491.	16.2	570
52	Assessment of Oxidative Metabolism in Brown Fat Using PET Imaging. Frontiers in Endocrinology, 2012, 3, 15.	3.5	105
53	Interactions of Perilipin-5 (Plin5) with Adipose Triglyceride Lipase. Journal of Biological Chemistry, 2011, 286, 5126-5135.	3.4	170
54	PER2 Controls Lipid Metabolism by Direct Regulation of PPARÎ ³ . Cell Metabolism, 2010, 12, 509-520.	16.2	400

4

#	Article	IF	CITATIONS
55	Perilipin Controls Lipolysis by Regulating the Interactions of AB-hydrolase Containing 5 (Abhd5) and Adipose Triglyceride Lipase (Atgl). Journal of Biological Chemistry, 2009, 284, 34538-34544.	3.4	306
56	Functional Interactions between Mldp (LSDP5) and Abhd5 in the Control of Intracellular Lipid Accumulation. Journal of Biological Chemistry, 2009, 284, 3049-3057.	3.4	120
57	Location, location: protein trafficking and lipolysis in adipocytes. Trends in Endocrinology and Metabolism, 2008, 19, 3-9.	7.1	110
58	Delivery of DNA into Adipocytes within Adipose Tissue. Methods in Molecular Biology, 2008, 423, 191-195.	0.9	5
59	Analysis of Lipolytic Protein Trafficking and Interactions in Adipocytes. Journal of Biological Chemistry, 2007, 282, 5726-5735.	3.4	255
60	Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E617-E626.	3.5	124
61	Metabolic and cellular plasticity in white adipose tissue I: effects of β3-adrenergic receptor activation. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E608-E616.	3.5	263
62	Perilipin Targets a Novel Pool of Lipid Droplets for Lipolytic Attack by Hormone-sensitive Lipase. Journal of Biological Chemistry, 2005, 280, 43109-43120.	3.4	110
63	Seeing the trees in the forest: selective electroporation of adipocytes within adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E574-E582.	3.5	38
64	Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6382-6385.	7.1	97
65	The putative β ₄ -adrenergic receptor is a novel state of the β ₁ -adrenergic receptor. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E199-E202.	3.5	101
66	Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. Journal of Neurochemistry, 2001, 76, 1565-1572.	3.9	189
67	RGS mRNA Expression in Rat Striatum. Journal of Neurochemistry, 2001, 72, 1529-1533.	3.9	79
68	PPAR ? agonists stimulate oligodendrocyte differentiation in tissue culture. Glia, 2001, 33, 191-204.	4.9	180
69	PPAR δagonists stimulate oligodendrocyte differentiation in tissue culture. , 2001, 33, 191.		2
70	A unique mechanism of desensitization to lipolysis mediated by β ₃ -adrenoceptor in rats with thermal injury. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E316-E324.	3.5	5
71	Characterization of the 5′-flanking region of the human dopamine transporter gene. Molecular Brain Research, 1999, 74, 167-174.	2.3	101
72	Member of the peroxisome proliferator-activated receptor family of transcription factors is		94

differentially expressed by oligodendrocytes. , 1998, 51, 563-573.

#	Article	IF	CITATIONS
73	Regulation of RGS mRNAs by cAMP in PC12 Cells. Biochemical and Biophysical Research Communications, 1998, 243, 52-55.	2.1	74
74	Regulators of G Protein Signaling: Rapid Changes in mRNA Abundance in Response to Amphetamine. Journal of Neurochemistry, 1998, 70, 2216-2219.	3.9	85
75	Selective Up-Regulation of α1a-Adrenergic Receptor Protein and mRNA in Brown Adipose Tissue by Neural and β3-Adrenergic Stimulation. Molecular Pharmacology, 1997, 51, 644-650.	2.3	27
76	Dopamine transporter binding in rat striatum and nucleus accumbens is unaltered following chronic changes in dopamine levels. Neuroscience Letters, 1996, 217, 55-57.	2.1	26
77	Why do adipocytes make the β3 adrenergic receptor?. Cellular Signalling, 1995, 7, 9-15.	3.6	44
78	The Mr 35,000 β-Adrenergic Receptor mRNA-binding Protein Binds Transcripts of G-protein-linked Receptors Which Undergo Agonist-induced Destabilization. Journal of Biological Chemistry, 1995, 270, 12787-12793.	3.4	56
79	Differential interaction of β1- and β3-adrenergic receptors with Gi in rat adipocytes. Cellular Signalling, 1994, 6, 457-465.	3.6	99
80	Dopamine and \hat{I}^3 -aminobutyric acid transporters: Differential regulation by agents that promote phosphorylation. Neuroscience Letters, 1994, 173, 143-146.	2.1	46
81	Subcellular distribution of adenylyl cyclase and GsÎ \pm in rat brown adipose tissue. Metabolism: Clinical and Experimental, 1991, 40, 432-437.	3.4	2
82	Splicing Pattern of Gs? mRNA in Human and Rat Brain. Journal of Neurochemistry, 1991, 57, 1019-1023.	3.9	16
83	Characterization of the distribution of G?o in rat striatal synaptosomes and its colocalization with tyrosine hydroxylase. Synapse, 1991, 9, 66-74.	1.2	4
84	Developmental Expression of Goin Neuronal Cultures from Rat Mesencephalon and Hypothalamus. Journal of Neurochemistry, 1990, 54, 1995-2001.	3.9	31
85	Relationship between GsαMessenger Ribonucleic Acid Splice Variants and the Molecular Forms of Gsa Protein in Rat Brown Adipose Tissue*. Endocrinology, 1990, 127, 1596-1601.	2.8	18
86	Effect of hepatic vagotomy and/or coeliac ganglionectomy on the delayed eating response to insulin and 2DG injection in rats. Physiology and Behavior, 1984, 33, 495-497.	2.1	8
87	Effects of sucrose feeding and denervation on lipogenesis in brown adipose tissue. Metabolism: Clinical and Experimental, 1984, 33, 257-261.	3.4	23
88	Effect of surcose overfeeding on brown adipose tissue lipogenesis and lipoprotein lipase activity in rats. Metabolism: Clinical and Experimental, 1983, 32, 202-207.	3.4	30
89	Effects of photoperiod and castration on post-fast food intake and body weight gain in golden hamsters. Physiology and Behavior, 1982, 28, 847-850.	2.1	12
90	Molecular Modeling of ABHD5 Structure and Ligand Recognition. Frontiers in Molecular Biosciences, 0, 9, .	3.5	4

#	Article	IF	CITATIONS
91	Deconstructing cold-induced brown adipocyte neogenesis in mice. ELife, 0, 11, .	6.0	20