Giovanni Minervini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/963487/publications.pdf

Version: 2024-02-01

70 papers

2,678 citations

236925 25 h-index 206112 48 g-index

79 all docs

79 docs citations

79 times ranked 4079 citing authors

#	Article	IF	CITATIONS
1	The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Research, 2016, 44, W367-W374.	14.5	369
2	DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Research, 2017, 45, D219-D227.	14.5	242
3	Critical assessment of protein intrinsic disorder prediction. Nature Methods, 2021, 18, 472-481.	19.0	187
4	Ca ²⁺ binding to Fâ€ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Reports, 2017, 18, 1065-1076.	4.5	170
5	DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 2020, 48, D269-D276.	14.5	141
6	DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Research, 2022, 50, D480-D487.	14.5	117
7	PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research, 2021, 49, D404-D411.	14.5	95
8	Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy. American Journal of Human Genetics, 2015, 96, 992-1000.	6.2	94
9	Human haptoglobin structure and function – a molecular modelling study. FEBS Journal, 2008, 275, 5648-5656.	4.7	78
10	RING 3.0: fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Research, 2022, 50, W651-W656.	14.5	75
11	Bluues server: electrostatic properties of wild-type and mutated protein structures. Bioinformatics, 2012, 28, 2189-2190.	4.1	72
12	FELLS: fast estimator of latent local structure. Bioinformatics, 2017, 33, 1889-1891.	4.1	72
13	High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits. Cellular Physiology and Biochemistry, 2018, 50, 1840-1855.	1.6	57
14	RepeatsDB: a database of tandem repeat protein structures. Nucleic Acids Research, 2014, 42, D352-D357.	14.5	53
15	Lys300 Plays a Major Role in the Catalytic Mechanism of Maize Polyamine Oxidaseâ€. Biochemistry, 2005, 44, 16108-16120.	2.5	48
16	Arginine 107 of yeast ATP synthase subunit g mediates sensitivity of the mitochondrial permeability transition to phenylglyoxal. Journal of Biological Chemistry, 2018, 293, 14632-14645.	3.4	40
17	Whole-Exome Sequencing Identifies Pathogenic Variants in $\langle i \rangle$ TJP1 $\langle i \rangle$ Gene Associated With Arrhythmogenic Cardiomyopathy. Circulation Genomic and Precision Medicine, 2018, 11, e002123.	3.6	38
18	VHLdb: A database of von Hippel-Lindau protein interactors and mutations. Scientific Reports, 2016, 6, 31128.	3.3	36

#	Article	IF	Citations
19	Probing mammalian spermine oxidase enzyme–substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids, 2011, 40, 1115-1126.	2.7	35
20	Arg-8 of yeast subunit e contributes to the stability of F-ATP synthase dimers and to the generation of the full-conductance mitochondrial megachannel. Journal of Biological Chemistry, 2019, 294, 10987-10997.	3.4	32
21	BOOGIE: Predicting Blood Groups from High Throughput Sequencing Data. PLoS ONE, 2015, 10, e0124579.	2.5	31
22	The role of mitochondrial ATP synthase in cancer. Biological Chemistry, 2020, 401, 1199-1214.	2.5	29
23	RAPHAEL: recognition, periodicity and insertion assignment of solenoid protein structures. Bioinformatics, 2012, 28, 3257-3264.	4.1	27
24	Assessment of phenolic herbicide toxicity and mode of action by different assays. Environmental Science and Pollution Research, 2016, 23, 7398-7408.	5.3	27
25	The lipoprotein <scp>HP1454</scp> of <i>Helicobacter pylori</i> i>regulates <scp>T</scp> â€eell response by shaping <scp>T</scp> â€eell receptor signalling. Cellular Microbiology, 2019, 21, e13006.	2.1	27
26	Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein. Scientific Reports, 2015, 5, 12605.	3.3	26
27	The invasive Manila clam Ruditapes philippinarum (Adams and Reeve, 1850) in Northern Adriatic Sea: Population genetics assessed by an integrated molecular approach. Fisheries Research, 2011, 110, 259-267.	1.7	25
28	Do Natural Proteins Differ from Random Sequences Polypeptides? Natural vs. Random Proteins Classification Using an Evolutionary Neural Network. PLoS ONE, 2012, 7, e36634.	2.5	25
29	SARS oVâ€2 variants preferentially emerge at intrinsically disordered protein sites helping immune evasion. FEBS Journal, 2022, 289, 4240-4250.	4.7	25
30	Genotype-phenotype relations of the von Hippel-Lindau tumor suppressor inferred from a large-scale analysis of disease mutations and interactors. PLoS Computational Biology, 2019, 15, e1006478.	3.2	24
31	The f subunit of human ATP synthase is essential for normal mitochondrial morphology and permeability transition. Cell Reports, 2021, 35, 109111.	6.4	22
32	Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie, 2017, 132, 109-120.	2.6	19
33	Design and Analysis of a Petri Net Model of the Von Hippel-Lindau (VHL) Tumor Suppressor Interaction Network. PLoS ONE, 2014, 9, e96986.	2.5	18
34	<i>CDKN2A</i> Unclassified Variants in Familial Malignant Melanoma: Combining Functional and Computational Approaches for Their Assessment. Human Mutation, 2014, 35, 828-840.	2.5	17
35	Insights into the proline hydroxylase (PHD) family, molecular evolution and its impact on human health. Biochimie, 2015, 116, 114-124.	2.6	17
36	$HIF1\hat{l}_{\pm}$ -dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death and Disease, 2021, 12, 434.	6.3	17

#	Article	IF	Citations
37	Calmodulin Enhances Cryptochrome Binding to INAD in Drosophila Photoreceptors. Frontiers in Molecular Neuroscience, 2018, 11, 280.	2.9	15
38	A targeted next-generation gene panel reveals a novel heterozygous nonsense variant in the TP63 gene in patients with arrhythmogenic cardiomyopathy. Heart Rhythm, 2019, 16, 773-780.	0.7	15
39	The clinical spectrum of CASQ1-related myopathy. Neurology, 2018, 91, e1629-e1641.	1.1	14
40	The pVHL neglected functions, a tale of hypoxia-dependent and -independent regulations in cancer. Open Biology, 2020, 10, 200109.	3.6	14
41	Massive non-natural proteins structure prediction using grid technologies. BMC Bioinformatics, 2009, 10, S22.	2.6	13
42	Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function. Biochemical and Biophysical Research Communications, 2014, 450, 1606-1611.	2.1	13
43	Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI. Human Mutation, 2017, 38, 1042-1050.	2.5	13
44	In silico investigation of PHDâ€3 specific HIF1â€Î± proline 567 hydroxylation: A new player in the VHL/HIFâ€1α interaction pathway?. FEBS Letters, 2013, 587, 2996-3001.	2.8	11
45	Structural in silico dissection of the collagen V interactome to identify genotype–phenotype correlations in classic Ehlers–Danlos Syndrome (EDS). FEBS Letters, 2015, 589, 3871-3878.	2.8	11
46	<i>In silico</i> Structural Study of Random Amino Acid Sequence Proteins Not Present in Nature. Chemistry and Biodiversity, 2009, 6, 2311-2336.	2.1	10
47	Assessing predictors for new post translational modification sites: AÂcase study on hydroxylation. PLoS Computational Biology, 2020, 16, e1007967.	3.2	10
48	Selection Dynamic of <i>Escherichia coli </i> Host in M13 Combinatorial Peptide Phage Display Libraries. Bioscience, Biotechnology and Biochemistry, 2011, 75, 812-815.	1.3	8
49	Computational analysis of prolyl hydroxylase domain-containing protein 2 (PHD2) mutations promoting polycythemia insurgence in humans. Scientific Reports, 2016, 6, 18716.	3.3	8
50	$Na\tilde{A}^-$ ve Bayes ant colony optimization for designing high dimensional experiments. Applied Soft Computing Journal, 2016, 49, 259-268.	7.2	6
51	Novel interactions of the von Hippel-Lindau (pVHL) tumor suppressor with the CDKN1 family of cell cycle inhibitors. Scientific Reports, 2017, 7, 46562.	3.3	6
52	Novel Missense Variant in <i>MYL2</i> Gene Associated With Hypertrophic Cardiomyopathy Showing High Incidence of Restrictive Physiology. Circulation Genomic and Precision Medicine, 2020, 13, e002824.	3.6	6
53	Never born proteins as a test case for ab initio protein structures prediction. Bioinformation, 2008, 3, 177-179.	0.5	6
54	Neurocognitive assessment and DNA sequencing expand the phenotype and genotype spectrum of Alström syndrome. American Journal of Medical Genetics, Part A, 2021, 185, 732-742.	1,2	5

#	Article	IF	CITATIONS
55	Identification of Rare LRP5 Variants in a Cohort of Males with Impaired Bone Mass. International Journal of Molecular Sciences, 2021, 22, 10834.	4.1	5
56	Insights into the molecular features of the von Hippel–Lindau-like protein. Amino Acids, 2019, 51, 1461-1474.	2.7	4
57	Structural protein reorganization and fold emergence investigated through amino acid sequence permutations. Amino Acids, 2015, 47, 147-152.	2.7	3
58	Validation of a new tool for seafood safety and traceability: the case of Manila clam Ruditapes philippinarum. Economia Agro-Alimentare, 2011, , 503-507.	0.5	3
59	Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathologica Communications, 2022, 10, 54.	5. 2	3
60	The E3 ubiquitin-protein ligase MDM2 is a novel interactor of the von Hippel–Lindau tumor suppressor. Scientific Reports, 2020, 10, 15850.	3.3	2
61	A Model Based Ant Colony Design for the Protein Engineering Problem. Lecture Notes in Computer Science, 2010, , 352-359.	1.3	2
62	Design and dynamic simulation of minimal metallo-proteins. Journal of Molecular Modeling, 2011, 17, 2919-2925.	1.8	1
63	The Ca 2+ regulatory site of the permeability transition pore is within the catalytic core of F-ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e65-e66.	1.0	1
64	Characterization of the pVHL Interactome in Human Testis Using High-Throughput Library Screening. Cancers, 2022, 14, 1009.	3.7	1
65	Health state of mollusc productive sites: Biochemical, physiological and molecular markers. Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2010, 157, S38.	1.8	0
66	<i>In silico</i> study of the structure and function of <i>Streptococcus mutans</i> plasmidic proteins. Bio-Algorithms and Med-Systems, 2017, 13, 51-61.	2.4	0
67	Pore formation by yeast mitochondrial ATP synthase involves subunits e, g and b. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e16-e17.	1.0	0
68	Role of F-ATP synthase f subunit in dimer formation and PTP modulation. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e110.	1.0	0
69	Porting Biological Applications in Grid: An Experience within the EUChinaGRID Framework., 2009,, 67-71.		0
70	Molecular Effects of Mutations in Human Genetic Diseases. International Journal of Molecular Sciences, 2022, 23, 6408.	4.1	0