Jun Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9634725/publications.pdf Version: 2024-02-01

Ιτικι Υικι

#	Article	IF	CITATIONS
1	Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12, 317-321.	31.5	747
2	Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology, 2014, 9, 378-383.	31.5	488
3	Emerging hydrovoltaic technology. Nature Nanotechnology, 2018, 13, 1109-1119.	31.5	429
4	Waving potential in graphene. Nature Communications, 2014, 5, 3582.	12.8	246
5	Low-Temperature Ohmic Contact to Monolayer MoS ₂ by van der Waals Bonded Co/ <i>h</i> BN Electrodes. Nano Letters, 2017, 17, 4781-4786.	9.1	233
6	Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity. Nano Letters, 2013, 13, 3232-3236.	9.1	190
7	Boron Nitride Nanostructures: Fabrication, Functionalization and Applications. Small, 2016, 12, 2942-2968.	10.0	187
8	Harvesting Energy from Water Flow over Graphene?. Nano Letters, 2012, 12, 1736-1741.	9.1	132
9	Twoâ€Dimensional Boron Crystals: Structural Stability, Tunable Properties, Fabrications and Applications. Advanced Functional Materials, 2017, 27, 1603300.	14.9	130
10	Hydrovoltaic Energy on the Way. Joule, 2020, 4, 1852-1855.	24.0	126
11	Hydrovoltaic technology: from mechanism to applications. Chemical Society Reviews, 2022, 51, 4902-4927.	38.1	110
12	Probing van der Waals interactions at two-dimensional heterointerfaces. Nature Nanotechnology, 2019, 14, 567-572.	31.5	99
13	Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nature Communications, 2022, 13, .	12.8	81
14	Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surfaceâ€Enhanced Raman Spectroscopy Substrates with High Sensitivity. Small, 2018, 14, e1802276.	10.0	80
15	Friction of low-dimensional nanomaterial systems. Friction, 2014, 2, 209-225.	6.4	70
16	In situ manipulation of van der Waals heterostructures for twistronics. Science Advances, 2020, 6, .	10.3	69
17	Large Single-Crystal Hexagonal Boron Nitride Monolayer Domains with Controlled Morphology and Straight Merging Boundaries. Small, 2015, 11, 4497-4502.	10.0	68
18	Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation. Small, 2016, 12, 3645-3650.	10.0	62

Jun Yin

#	Article	IF	CITATIONS
19	Exceptional high Seebeck coefficient and gas-flow-induced voltage in multilayer graphene. Applied Physics Letters, 2012, 100, 183108.	3.3	60
20	Dynamics for droplet-based electricity generators. Nano Energy, 2021, 80, 105558.	16.0	59
21	Aligned Growth of Hexagonal Boron Nitride Monolayer on Germanium. Small, 2015, 11, 5375-5380.	10.0	56
22	Wettability of Supported Monolayer Hexagonal Boron Nitride in Air. Advanced Functional Materials, 2017, 27, 1603181.	14.9	54
23	Hydroelectric generator from transparent flexible zinc oxide nanofilms. Nano Energy, 2017, 32, 125-129.	16.0	40
24	Dimensional reduction, quantum Hall effect and layer parity in graphite films. Nature Physics, 2019, 15, 437-442.	16.7	39
25	Polycrystalline Few-Layer Graphene as a Durable Anticorrosion Film for Copper. Nano Letters, 2021, 21, 1161-1168.	9.1	39
26	Performance and power management of droplets-based electricity generators. Nano Energy, 2022, 92, 106705.	16.0	36
27	Substrate-Sensitive Graphene Oxidation. Journal of Physical Chemistry Letters, 2016, 7, 867-873.	4.6	26
28	Hexagonal Boron Nitride Growth on Cu‣i Alloy: Morphologies and Large Domains. Small, 2019, 15, e1805188.	10.0	24
29	Enhanced gas-flow-induced voltage in graphene. Applied Physics Letters, 2011, 99, .	3.3	21
30	Tunable Electrical Performance of Few-Layered Black Phosphorus by Strain. Small, 2016, 12, 5276-5280.	10.0	19
31	Kinetic photovoltage along semiconductor-water interfaces. Nature Communications, 2021, 12, 4998.	12.8	14
32	Boosting the output of bottom-electrode droplets energy harvester by a branched electrode. Nano Energy, 2022, 95, 107024.	16.0	13
33	Oxygen-suppressed selective growth of monolayer hexagonal boron nitride on copper twin crystals. Nano Research, 2017, 10, 826-833.	10.4	12
34	Anisotropic Mechanics of 2D Materials. Advanced Engineering Materials, 2022, 24, .	3.5	8
35	Biomechanics in plant resistance to drought. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 1142-1157.	3.4	2
36	Hydrostatic pressure and interfacial tension induce mode instability in wave propagation along a liquid-filled microtubule. Physics of Fluids, 2020, 32, 031901.	4.0	2

Jun Yin

#	Article	IF	CITATIONS
37	Buckling Behaviors at the Interface of Liquid–Solid Systems. Advanced Engineering Materials, 0, , 2101153.	3.5	1
38	Wetting Stability of Supported Graphene in Ambient Environment. Advanced Engineering Materials, 0, , 2101283.	3.5	0