Tammo Ostendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9634623/publications.pdf

Version: 2024-02-01

54 papers

3,245 citations

30 h-index 52 g-index

54 all docs 54 docs citations

54 times ranked 3715 citing authors

#	Article	IF	CITATIONS
1	Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nature Reviews Nephrology, 2010, 6, 643-656.	9.6	517
2	Mesenchymal Stem Cells Prevent Progressive Experimental Renal Failure but Maldifferentiate into Glomerular Adipocytes. Journal of the American Society of Nephrology: JASN, 2007, 18, 1754-1764.	6.1	265
3	Novel Approach to Specific Growth Factor Inhibition in Vivo. American Journal of Pathology, 1999, 154, 169-179.	3.8	239
4	Pro-fibrogenic potential of PDGF-D in liver fibrosis. Journal of Hepatology, 2007, 46, 1064-1074.	3.7	164
5	Treatment targets in renal fibrosis. Nephrology Dialysis Transplantation, 2007, 22, 3391-3407.	0.7	132
6	Specific Antagonism of PDGF Prevents Renal Scarring in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2001, 12, 909-918.	6.1	112
7	PDGF-C Is a Proinflammatory Cytokine that Mediates Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2008, 19, 281-289.	6.1	103
8	Complement C5 Mediates Experimental Tubulointerstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2007, 18, 1508-1515.	6.1	100
9	A Fully Human Monoclonal Antibody (CR002) Identifies PDGF-D as a Novel Mediator of Mesangioproliferative Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2003, 14, 2237-2247.	6.1	87
10	PDGF and the progression of renal disease. Nephrology Dialysis Transplantation, 2014, 29, i45-i54.	0.7	82
11	Detection of Activated Parietal Epithelial Cells on the Glomerular Tuft Distinguishes Early Focal Segmental Glomerulosclerosis from Minimal Change Disease. American Journal of Pathology, 2014, 184, 3239-3248.	3.8	81
12	PDGF-C Expression in the Developing and Normal Adult Human Kidney and in Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2003, 14, 1145-1153.	6.1	69
13	The PDGF family in renal fibrosis. Pediatric Nephrology, 2012, 27, 1041-1050.	1.7	67
14	Antagonism of PDGF-D by Human Antibody CR002 Prevents Renal Scarring in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 1054-1062.	6.1	64
15	Expression of a Novel PDGF Isoform, PDGF-C, in Normal and Diseased Rat Kidney. Journal of the American Society of Nephrology: JASN, 2002, 13, 910-917.	6.1	62
16	Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74. Journal of the American Society of Nephrology: JASN, 2016, 27, 1650-1664.	6.1	59
17	Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis. Kidney International, 2015, 88, 990-998.	5.2	57
18	PDGF-D inhibition by CR002 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis. Nephrology Dialysis Transplantation, 2007, 22, 1323-1331.	0.7	55

#	Article	IF	CITATIONS
19	CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal segmental glomerulosclerosis. Kidney International, 2018, 93, 626-642.	5.2	52
20	Key metalloproteinase-mediated pathways in the kidney. Nature Reviews Nephrology, 2021, 17, 513-527.	9.6	46
21	The Effects of Platelet-Derived Growth Factor Antagonism in Experimental Glomerulonephritis Are Independent of the Transforming Growth Factor–β System. Journal of the American Society of Nephrology: JASN, 2002, 13, 658-667.	6.1	46
22	IL-6 Trans-Signaling Drives Murine Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 132-142.	6.1	45
23	Platelet-derived growth factors (PDGFs) in glomerular and tubulointerstitial fibrosis. Kidney International Supplements, 2014, 4, 65-69.	14.2	44
24	Diffusionâ€weighted MRI does not reflect kidney fibrosis in a rat model of fibrosis. Journal of Magnetic Resonance Imaging, 2015, 42, 990-998.	3.4	44
25	Y-Box Protein 1 Mediates PDGF-B Effects in Mesangioproliferative Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 2985-2996.	6.1	42
26	Extracellular YB-1 Blockade in Experimental Nephritis Upregulates Notch-3 Receptor Expression and Signaling. Nephron Experimental Nephrology, 2011, 118, e100-e108.	2.2	41
27	Selective Cyclooxygenase-2 Inhibition Impairs Glomerular Capillary Healing in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2002, 13, 1261-1270.	6.1	40
28	PDGF-C Mediates Glomerular Capillary Repair. American Journal of Pathology, 2010, 177, 58-69.	3.8	38
29	Calcineurin-mediated YB-1 Dephosphorylation Regulates CCL5 Expression during Monocyte Differentiation. Journal of Biological Chemistry, 2014, 289, 21401-21412.	3.4	33
30	Therapeutic nuclear shuttling of YB-1 reduces renal damage and fibrosis. Kidney International, 2016, 90, 1226-1237.	5.2	32
31	A Novel Role for GATA3 in Mesangial Cells in Glomerular Development and Injury. Journal of the American Society of Nephrology: JASN, 2019, 30, 1641-1658.	6.1	31
32	Patients with IgA nephropathy exhibit high systemic PDGF-DD levels. Nephrology Dialysis Transplantation, 2009, 24, 2755-2762.	0.7	26
33	Inducible Nitric Oxide Synthase–Derived Nitric Oxide Promotes Glomerular Angiogenesis via Upregulation of Vascular Endothelial Growth Factor Receptors. Journal of the American Society of Nephrology: JASN, 2004, 15, 2307-2319.	6.1	25
34	A Novel, Dual Role of CCN3 in Experimental Glomerulonephritis. American Journal of Pathology, 2012, 180, 1979-1990.	3.8	25
35	Effects and mechanisms of angiotensin II receptor blockade with telmisartan in a normotensive model of mesangioproliferative nephritis. Nephrology Dialysis Transplantation, 2011, 26, 3131-3143.	0.7	24
36	Growth arrest–specific protein 1 is a novel endogenous inhibitor of glomerular cell activation and proliferation. Kidney International, 2013, 83, 251-263.	5.2	24

#	Article	IF	CITATIONS
37	Complement C5a receptors C5L2 and C5aR in renal fibrosis. American Journal of Physiology - Renal Physiology, 2018, 314, F35-F46.	2.7	24
38	<scp>YB</scp> â€1 orchestrates onset and resolution of renal inflammation ⟨i>via ⟨scp>IL10⟨/i>gene regulation. Journal of Cellular and Molecular Medicine, 2017, 21, 3494-3505.	3.6	23
39	High-fat diet-induced obesity causes an inflammatory microenvironment in the kidneys of aging Long-Evans rats. Journal of Inflammation, 2019, 16, 14.	3.4	21
40	New Aspects of Kidney Fibrosis–From Mechanisms of Injury to Modulation of Disease. Frontiers in Medicine, 2021, 8, 814497.	2.6	21
41	Gp130-dependent signaling in the podocyte. American Journal of Physiology - Renal Physiology, 2014, 307, F346-F355.	2.7	20
42	Renal side effects of anti-VEGF therapy in man: a new test system. Nephrology Dialysis Transplantation, 2007, 22, 2778-2780.	0.7	19
43	Role of Platelet-Derived Growth Factor-CC in Capillary Rarefaction in Renal Fibrosis. American Journal of Pathology, 2015, 185, 2132-2142.	3.8	19
44	The YB-1:Notch-3 axis modulates immune cell responses and organ damage in systemic lupus erythematosus. Kidney International, 2020, 97, 289-303.	5.2	18
45	Biological responses to PDGF-AA versus PDGF-CC in renal fibroblasts. Nephrology Dialysis Transplantation, 2013, 28, 889-900.	0.7	16
46	Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney International, 2019, 95, 1103-1119.	5.2	14
47	The nucleic acid binding protein YB-1–controlled expression of CXCL-1 modulates kidney damage inÂliver fibrosis. Kidney International, 2020, 97, 741-752.	5.2	13
48	PDGF-D and Renal Disease: Yet Another One of Those Growth Factors?. Journal of the American Society of Nephrology: JASN, 2003, 14, 2690-2691.	6.1	12
49	The Role of PDGF-D in Mesangioproliferative Glomerulonephritis. , 2007, 157, 153-158.		12
50	Late angiotensin <scp>II</scp> receptor blockade in progressive rat mesangioproliferative glomerulonephritis: new insights into mechanisms. Journal of Pathology, 2013, 229, 672-684.	4.5	12
51	Cold Shock Proteins Mediate GN with Mesangioproliferation. Journal of the American Society of Nephrology: JASN, 2016, 27, 3678-3689.	6.1	10
52	YB-1 increases glomerular, but decreases interstitial fibrosis in CNI-induced nephropathy. Clinical Immunology, 2018, 194, 67-74.	3.2	10
53	Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Scientific Reports, 2015, 5, 14685.	3.3	8
54	Cytokines and Growth Factors. , 2009, , 243-265.		0