
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9631825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002, 100, 4325-4336.	1.4	1,444
2	<i>IDH1</i> and <i>IDH2</i> Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2010, 28, 2348-2355.	1.6	699
3	Adverse Prognostic Significance of KIT Mutations in Adult Acute Myeloid Leukemia With inv(16) and t(8;21): A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2006, 24, 3904-3911.	1.6	618
4	Cytogenetics in acute leukemia. Blood Reviews, 2004, 18, 115-136.	5.7	600
5	Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?. Blood, 2007, 109, 431-448.	1.4	507
6	MicroRNA Expression in Cytogenetically Normal Acute Myeloid Leukemia. New England Journal of Medicine, 2008, 358, 1919-1928.	27.0	427
7	Prognostic Significance of the European LeukemiaNet Standardized System for Reporting Cytogenetic and Molecular Alterations in Adults With Acute Myeloid Leukemia. Journal of Clinical Oncology, 2012, 30, 4515-4523.	1.6	363
8	Prognostic Factors and Outcome of Core Binding Factor Acute Myeloid Leukemia Patients With t(8;21) Differ From Those of Patients With inv(16): A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2005, 23, 5705-5717.	1.6	324
9	Favorable Prognostic Impact of <i>NPM1</i> Mutations in Older Patients With Cytogenetically Normal De Novo Acute Myeloid Leukemia and Associated Gene- and MicroRNA-Expression Signatures: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2010, 28, 596-604.	1.6	305
10	Prognostic Significance of, and Gene and MicroRNA Expression Signatures Associated With, <i>CEBPA</i> Mutations in Cytogenetically Normal Acute Myeloid Leukemia With High-Risk Molecular Features: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2008, 26, 5078-5087.	1.6	294
11	<i>TET2</i> Mutations Improve the New European LeukemiaNet Risk Classification of Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2011, 29, 1373-1381.	1.6	291
12	Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood, 2006, 108, 63-73.	1.4	285
13	The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood, 2011, 117, 1121-1129.	1.4	247
14	ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood, 2011, 118, 6920-6929.	1.4	246
15	Age-Related Prognostic Impact of Different Types of <i>DNMT3A</i> Mutations in Adults With Primary Cytogenetically Normal Acute Myeloid Leukemia. Journal of Clinical Oncology, 2012, 30, 742-750.	1.6	244
16	FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood, 2008, 111, 1552-1559.	1.4	243
17	<i>RUNX1</i> Mutations Are Associated With Poor Outcome in Younger and Older Patients With Cytogenetically Normal Acute Myeloid Leukemia and With Distinct Gene and MicroRNA Expression Signatures. Journal of Clinical Oncology, 2012, 30, 3109-3118.	1.6	242
18	Acquired copy number alterations in adult acute myeloid leukemia genomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12950-12955.	7.1	231

#	Article	IF	CITATIONS
19	Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nature Genetics, 2016, 48, 1481-1489.	21.4	231
20	Wilms' Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2008, 26, 4595-4602.	1.6	230
21	Overexpression of the ETS-Related Gene, <i>ERG</i> , Predicts a Worse Outcome in Acute Myeloid Leukemia With Normal Karyotype: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2005, 23, 9234-9242.	1.6	226
22	Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18679-18684.	7.1	214
23	FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood, 2010, 116, 3622-3626.	1.4	201
24	Repetitive Cycles of High-Dose Cytarabine Benefit Patients With Acute Myeloid Leukemia and inv(16)(p13q22) or t(16;16)(p13;q22): Results from CALGB 8461. Journal of Clinical Oncology, 2004, 22, 1087-1094.	1.6	190
25	High Expression Levels of theETS-Related Gene,ERG, Predict Adverse Outcome and Improve Molecular Risk-Based Classification of Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2007, 25, 3337-3343.	1.6	184
26	Prognostic Significance of Expression of a Single MicroRNA, <i>miR-181a</i> , in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2010, 28, 5257-5264.	1.6	176
27	High BAALC expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and Leukemia Group B (CALGB) study. Blood, 2008, 111, 5371-5379.	1.4	174
28	Clinical Role of microRNAs in Cytogenetically Normal Acute Myeloid Leukemia: <i>miR-155</i> Upregulation Independently Identifies High-Risk Patients. Journal of Clinical Oncology, 2013, 31, 2086-2093.	1.6	165
29	Clinical importance of cytogenetics in acute myeloid leukaemia. Best Practice and Research in Clinical Haematology, 2001, 14, 19-47.	1.7	162
30	Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of <i>APP</i> , <i>ETS2</i> , and <i>ERG</i> genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3915-3920.	7.1	155
31	Prognostic Importance of <i>MN1</i> Transcript Levels, and Biologic Insights From <i>MN1</i> -Associated Gene and MicroRNA Expression Signatures in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2009, 27, 3198-3204.	1.6	149
32	Cytogenetic, Molecular Genetic, and Clinical Characteristics of Acute Myeloid Leukemia With a Complex Karyotype. Seminars in Oncology, 2008, 35, 365-377.	2.2	138
33	Epigenetics Meets Genetics in Acute Myeloid Leukemia: Clinical Impact of a Novel Seven-Gene Score. Journal of Clinical Oncology, 2014, 32, 548-556.	1.6	134
34	Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood, 2006, 108, 1677-1683.	1.4	123
35	Outcome of Induction and Postremission Therapy in Younger Adults With Acute Myeloid Leukemia With Normal Karyotype: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2005, 23, 482-493.	1.6	119
36	Cytogenetics and Molecular Genetics of Acute Lymphoblastic Leukemia. Hematology/Oncology Clinics of North America, 2009, 23, 991-1010.	2.2	115

#	Article	IF	CITATIONS
37	Low-Dose Interleukin-2 Immunotherapy Does Not Improve Outcome of Patients Age 60 Years and Older With Acute Myeloid Leukemia in First Complete Remission: Cancer and Leukemia Group B Study 9720. Journal of Clinical Oncology, 2008, 26, 4934-4939.	1.6	114
38	Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Current Opinion in Hematology, 2005, 12, 68-75.	2.5	110
39	BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood, 2010, 116, 5660-5669.	1.4	110
40	Chromosome Aberrations, Gene Mutations and Expression Changes, and Prognosis in Adult Acute Myeloid Leukemia. Hematology American Society of Hematology Education Program, 2006, 2006, 169-177.	2.5	107
41	Abnormal Cytogenetics at Date of Morphologic Complete Remission Predicts Short Overall and Disease-Free Survival, and Higher Relapse Rate in Adult Acute Myeloid Leukemia: Results From Cancer and Leukemia Group B Study 8461. Journal of Clinical Oncology, 2004, 22, 2410-2418.	1.6	101
42	Clinical outcome of <i>de novo</i> acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. British Journal of Haematology, 2007, 137, 387-400.	2.5	97
43	Comparison of Cytogenetic and Molecular Genetic Detection of t(8;21) and inv(16) in a Prospective Series of Adults With De Novo Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2001, 19, 2482-2492.	1.6	94
44	Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood, 2007, 109, 5164-5167.	1.4	92
45	Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes Chromosomes and Cancer, 2002, 34, 137-153.	2.8	90
46	Diagnostic and Prognostic Value of Cytogenetics in Acute Myeloid Leukemia. Hematology/Oncology Clinics of North America, 2011, 25, 1135-1161.	2.2	87
47	Ten-year outcome of patients with acute myeloid leukemia not treated with allogeneic transplantation in first complete remission. Blood Advances, 2018, 2, 1645-1650.	5.2	85
48	Mutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood, 2010, 116, 788-792.	1.4	80
49	Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: an analysis of Alliance studies. Leukemia, 2018, 32, 1338-1348.	7.2	80
50	Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Current Opinion in Oncology, 2008, 20, 711-718.	2.4	79
51	Additional cytogenetic abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia GroupÂB. British Journal of Haematology, 2004, 124, 275-288.	2.5	78
52	Influence of new molecular prognostic markers in patients with karyotypically normal acute myeloid leukemia: recent advances. Current Opinion in Hematology, 2007, 14, 106-114.	2.5	66
53	Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia, 2020, 34, 3215-3227.	7.2	66
54	miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood, 2012, 120, 249-258.	1.4	64

#	Article	IF	CITATIONS
55	Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/ <i>KMT2A</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26340-26346.	7.1	59
56	Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia, 2019, 33, 1620-1634.	7.2	55
57	Low expression of MN1 associates with better treatment response in older patients with de novo cytogenetically normal acute myeloid leukemia. Blood, 2011, 118, 4188-4198.	1.4	52
58	Expression and functional relevance of long non-coding RNAs in acute myeloid leukemia stem cells. Leukemia, 2019, 33, 2169-2182.	7.2	52
59	SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. Journal of Clinical Investigation, 2014, 124, 1512-1524.	8.2	52
60	Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. International Journal of Oncology, 2008, 33, 239-44.	3.3	50
61	Persistence of <i><scp>DNMT</scp>3A</i> R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. British Journal of Haematology, 2016, 175, 226-236.	2.5	49
62	GAS6 expression identifies high-risk adult AML patients: potential implications for therapy. Leukemia, 2014, 28, 1252-1258.	7.2	45
63	MicroRNA expression in acute myeloid leukemia. Current Hematologic Malignancy Reports, 2009, 4, 83-88.	2.3	44
64	Combination of dasatinib with chemotherapy in previously untreated core binding factor acute myeloid leukemia: CALGB 10801. Blood Advances, 2020, 4, 696-705.	5.2	44
65	Clinical Significance of the Most Common Chromosome Translocations in Adult Acute Myeloid Leukemia. Journal of the National Cancer Institute Monographs, 2008, 2008, 52-57.	2.1	43
66	Molecular signatures in acute myeloid leukemia. Current Opinion in Hematology, 2009, 16, 64-69.	2.5	41
67	Poor Survival and Differential Impact of Genetic Features of Black Patients with Acute Myeloid Leukemia. Cancer Discovery, 2021, 11, 626-637.	9.4	41
68	inv(16)/t(16;16) acute myeloid leukemia with non–type A CBFB-MYH11 fusions associate with distinct clinical and genetic features and lack KIT mutations. Blood, 2013, 121, 385-391.	1.4	39
69	Randomized trial of 10 days of decitabine ± bortezomib in untreated older patients with AML: CALGB 11002 (Alliance). Blood Advances, 2018, 2, 3608-3617.	5.2	39
70	Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4641-E4647.	7.1	36
71	NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia, 2018, 32, 2536-2545.	7.2	33
72	Intensive induction is effective in selected octogenarian acute myeloid leukemia patients: prognostic significance of karyotype and selected molecular markers used in the European LeukemiaNet classification. Haematologica, 2014, 99, 308-313.	3.5	32

#	Article	IF	CITATIONS
73	Clinical and functional significance of circular RNAs in cytogenetically normal AML. Blood Advances, 2020, 4, 239-251.	5.2	29
74	Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica, 2017, 102, 1391-1400.	3.5	28
75	Molecular cytogenetic characterization of the KG-1 and KG-1a acute myeloid leukemia cell lines by use of spectral karyotyping and fluorescence in situ hybridization. Genes Chromosomes and Cancer, 2003, 38, 249-252.	2.8	27
76	MicroRNA expression profiling in acute myeloid and chronic lymphocytic leukaemias. Best Practice and Research in Clinical Haematology, 2009, 22, 239-248.	1.7	26
77	Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. International Journal of Oncology, 1992, 33, 239.	3.3	25
78	Prognostic impact of the CD34+/CD38âî' cell burden in patients with acute myeloid leukemia receiving allogeneic stem cell transplantation. American Journal of Hematology, 2017, 92, 388-396.	4.1	25
79	Secondary cytogenetic abnormalities in core-binding factor AML harboring inv(16) vs t(8;21). Blood Advances, 2021, 5, 2481-2489.	5.2	25
80	Mutational Landscape and Gene Expression Patterns in Adult Acute Myeloid Leukemias with Monosomy 7 as a Sole Abnormality. Cancer Research, 2017, 77, 207-218.	0.9	23
81	Mutations associated with a 17-gene leukemia stem cell score and the score's prognostic relevance in the context of the European LeukemiaNet classification of acute myeloid leukemia. Haematologica, 2020, 105, 721-729.	3.5	21
82	Clinical outcome and gene- and microRNA-expression profiling according to the Wilms tumor 1 (WT1) single nucleotide polymorphism rs16754 in adult de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Haematologica, 2011, 96, 1488-1495.	3.5	20
83	Gene expression signature predicts relapse in adult patients with cytogenetically normal acute myeloid leukemia. Blood Advances, 2021, 5, 1474-1482.	5.2	20
84	Coreâ€binding factor acute myeloid leukemia with t(8;21): Risk factors and a novel scoring system (l―CBF) Tj E	TQ <u>q</u> 0 0 0	rgBT /Overloo
85	Molecular, clinical, and prognostic implications of <i>PTPN11</i> mutations in acute myeloid leukemia. Blood Advances, 2022, 6, 1371-1380.	5.2	16
86	Phase 3 randomized trial of chemotherapy with or without oblimersen in older AML patients: CALGB 10201 (Alliance). Blood Advances, 2021, 5, 2775-2787.	5.2	15
87	New recurrent balanced translocations in acute myeloid leukemia and myelodysplastic syndromes: Cancer and leukemia group B 8461. Genes Chromosomes and Cancer, 2013, 52, 385-401.	2.8	13
88	Chromosome abnormalities at onset of complete remission are associated with worse outcome in patients with acute myeloid leukemia and an abnormal karyotype at diagnosis: CALGB 8461 (Alliance). Haematologica, 2016, 101, 1516-1523.	3.5	13
89	Isolated trisomy of chromosomes 8, 11, 13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. International Journal of Oncology, 2002, 21, 1041-51.	3.3	13
90	Genetic Characterization and Prognostic Relevance of Acquired Uniparental Disomies in Cytogenetically Normal Acute Myeloid Leukemia. Clinical Cancer Research, 2019, 25, 6524-6531.	7.0	12

#	Article	IF	CITATIONS
91	Cancer and Leukemia Group B Leukemia Correlative Science Committee: Major Accomplishments and Future Directions: Table 1 Clinical Cancer Research, 2006, 12, 3564s-3571s.	7.0	11
92	Spectral karyotyping reveals 17;22 fusions in a cytogenetically atypical dermatofibrosarcoma protuberans with a large marker chromosome as a sole abnormality. Genes Chromosomes and Cancer, 2001, 31, 182-186.	2.8	10
93	Clinical and molecular characterization of patients with acute myeloid leukemia and sole trisomies of chromosomes 4, 8, 11, 13 or 21. Leukemia, 2020, 34, 358-368.	7.2	8
94	Prognostic and Biologic Relevance of Clinically Applicable Long Noncoding RNA Profiling in Older Patients with Cytogenetically Normal Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2019, 18, 1451-1459.	4.1	7
95	Precision oncology in AML: validation of the prognostic value of the knowledge bank approach and suggestions for improvement. Journal of Hematology and Oncology, 2021, 14, 107.	17.0	6
96	Effect of additional cytogenetic abnormalities on survival in arsenic trioxide-treated acute promyelocytic leukemia. Blood Advances, 2022, 6, 3433-3439.	5.2	5
97	Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia. Haematologica, 2022, 107, 1034-1044.	3.5	4
98	Chromosome Abnormalities in Acute Myeloid Leukaemia and Their Clinical Importance. , 2015, , 275-317.		2
99	Reply to K. Orendi et al. Journal of Clinical Oncology, 2013, 31, 2361-2362.	1.6	1
100	Implementation of standardized variant-calling nomenclature in the age of next-generation sequencing: where do we stand?. Leukemia, 2019, 33, 809-810.	7.2	1
101	Acute myeloid leukemia with adverse cytogenetic risk. Oncology, 2012, 26, 714, 723.	0.5	1
102	Albert de la Chapelle—pro memoriam. Journal of Applied Genetics, 2021, 62, 455-458.	1.9	0
103	Acute Myeloid Leukemia. , 2016, , 527-559.		0