
Stephen Arnovitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9630330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wnt–β-catenin activation epigenetically reprograms Treg cells in inflammatory bowel disease and dysplastic progression. Nature Immunology, 2021, 22, 471-484.	14.5	39
2	TCF-1 and HEB cooperate to establish the epigenetic and transcription profiles of CD4+CD8+ thymocytes. Nature Immunology, 2018, 19, 1366-1378.	14.5	50
3	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31, 127-141.	16.8	1,139
4	Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nature Communications, 2017, 8, 2099.	12.8	45
5	miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 2016, 7, 11452.	12.8	113
6	Eradication of Acute Myeloid Leukemia with FLT3 Ligand–Targeted miR-150 Nanoparticles. Cancer Research, 2016, 76, 4470-4480.	0.9	48
7	ldentification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia. Cancer Letters, 2016, 372, 157-165.	7.2	25
8	PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the <i>MLL</i> -Rearranged Disease. Cancer Research, 2016, 76, 619-629.	0.9	45
9	Fto Plays an Oncogenic Role in Acute Myeloid Leukemia As a N6-Methyladenosine RNA Demethylase. Blood, 2016, 128, 2706-2706.	1.4	5
10	TET1 Regulates DNA Replication through Targeting of Minichromosome Maintenance Genes. Blood, 2016, 128, 2687-2687.	1.4	0
11	Overexpression and knockout of miR-126 both promote leukemogenesis. Blood, 2015, 126, 2005-2015.	1.4	65
12	A novel mutation in the promoter of RARS2 causes pontocerebellar hypoplasia in two siblings. Journal of Human Genetics, 2015, 60, 363-369.	2.3	26
13	Targeted Treatment of FLT3 -Overexpressing Acute Myeloid Leukemia with MiR-150 Nanoparticles Guided By Conjugated FLT3 Ligand Peptides. Blood, 2015, 126, 3784-3784.	1.4	2
14	Uncover TET1 Targets in MLL -Rearranged Leukemia. Blood, 2015, 126, 3632-3632.	1.4	0
15	Overexpression and Knockout of Mir-126 Both Promote Leukemogenesis through Targeting Distinct Gene Signaling. Blood, 2015, 126, 3667-3667.	1.4	1
16	MLL-Rearranged Acute Myeloid Leukemias Drive Expression Of Mir-9, a Critical Oncogene In Leukemogenesis. Blood, 2013, 122, 3740-3740.	1.4	0
17	miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia. Nature Communications, 2012, 3, 688.	12.8	138
18	Blockade of Mir-150 Maturation by MLL-Fusion/MYC/Lin-28 Is Required for MLL-Associated Leukemia. Blood. 2012, 120, 3499-3499.	1.4	1

#	Article	IF	CITATIONS
19	The HOXA/PBX3 Pathway Is an Attractive Therapeutic Target in MLL-Rearranged Acute Leukemia. Blood, 2012, 120, 3522-3522.	1.4	0
20	MLL-Associated Leukemias Drive Expression of MiR-9, Required for Tumorigenesis. Blood, 2012, 120, 525-525.	1.4	0
21	Repression of Mir-495, a Microrna Associated with Favorable Outcome of Acute Myeloid Leukemia Patients, Is Required for the MLL-Associated Leukemogenesis,. Blood, 2011, 118, 3462-3462.	1.4	0
22	Activation of a Mir-181-Targeting HOXA-PBX3 Homeobox Gene Signature Is Associated with Adverse Prognosis of Cytogenetically Abnormal Acute Myeloid Leukemia. Blood, 2011, 118, 236-236.	1.4	0