
Tina S Skinner-Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/962433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drug repurposing and human parasitic protozoan diseases. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 95-111.	3.4	286
2	Structural basis for the inhibition of the essential <i>Plasmodium falciparum</i> M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2537-2542.	7.1	133
3	Potencies of Human Immunodeficiency Virus Protease Inhibitors In Vitro against Plasmodium falciparum and In Vivo against Murine Malaria. Antimicrobial Agents and Chemotherapy, 2006, 50, 639-648.	3.2	130
4	Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues. Antimicrobial Agents and Chemotherapy, 2008, 52, 1454-1461.	3.2	112
5	Characterization of the Plasmodium falciparum M17 Leucyl Aminopeptidase. Journal of Biological Chemistry, 2007, 282, 2069-2080.	3.4	111
6	In vitro stage-specific sensitivity of Plasmodium falciparum to quinine and artemisinin drugs. International Journal for Parasitology, 1996, 26, 519-525.	3.1	110
7	Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends in Biochemical Sciences, 2010, 35, 53-61.	7.5	108
8	Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside Phosphonates: A New Class of Antimalarial Therapeutics. Journal of Medicinal Chemistry, 2009, 52, 4391-4399.	6.4	107
9	Identification of Phosphinate Dipeptide Analog Inhibitors Directed against the <i>Plasmodium falciparum</i> M17 Leucine Aminopeptidase as Lead Antimalarial Compounds. Journal of Medicinal Chemistry, 2007, 50, 6024-6031.	6.4	84
10	Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 42-50.	3.4	82
11	A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer's clefts. Molecular and Biochemical Parasitology, 2004, 136, 181-189.	1.1	81
12	Structure of the <i>Plasmodium falciparum</i> M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2449-2454.	7.1	80
13	Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939. Antimicrobial Agents and Chemotherapy, 2012, 56, 3849-3856.	3.2	74
14	HIV and malaria co-infection: interactions and consequences of chemotherapy. Trends in Parasitology, 2008, 24, 264-271.	3.3	69
15	Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS ONE, 2012, 7, e31938.	2.5	64
16	Lysine Acetylation in Sexual Stage Malaria Parasites Is a Target for Antimalarial Small Molecules. Antimicrobial Agents and Chemotherapy, 2014, 58, 3666-3678.	3.2	62
17	Overexpression of Leucyl Aminopeptidase in Plasmodium falciparum Parasites. Journal of Biological Chemistry, 2006, 281, 1741-1745.	3.4	55
18	Lead Compounds for Antimalarial Chemotherapy:Â Purine Base Analogs Discriminate between Human andP.Falciparum6-Oxopurine Phosphoribosyltransferases. Journal of Medicinal Chemistry, 2006, 49, 7479-7486.	6.4	55

#	Article	IF	CITATIONS
19	Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. Advances in Parasitology, 2020, 107, 201-282.	3.2	53
20	Synergistic Interactions of the Antiretroviral Protease Inhibitors Saquinavir and Ritonavir with Chloroquine and Mefloquine against Plasmodium falciparum In Vitro. Antimicrobial Agents and Chemotherapy, 2007, 51, 759-762.	3.2	52
21	Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infectious Diseases, 2018, 4, 431-444.	3.8	50
22	The M18 Aspartyl Aminopeptidase of the Human Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2007, 282, 30817-30826.	3.4	48
23	Identification of novel quinazoline derivatives as potent antiplasmodial agents. European Journal of Medicinal Chemistry, 2019, 161, 277-291.	5.5	44
24	Mollemycin A: An Antimalarial and Antibacterial Glyco-hexadepsipeptide-polyketide from an Australian Marine-Derived <i>Streptomyces</i> sp. (CMB-M0244). Organic Letters, 2014, 16, 1716-1719.	4.6	41
25	Psammaplysin Derivatives from the Balinese Marine Sponge <i>Aplysinella strongylata</i> . Journal of Natural Products, 2012, 75, 2132-2143.	3.0	40
26	The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis. International Journal of Antimicrobial Agents, 2007, 29, 98-102.	2.5	39
27	<i>Plasmodium</i> Gametocyte Inhibition Identified from a Natural-Product-Based Fragment Library. ACS Chemical Biology, 2013, 8, 2654-2659.	3.4	39
28	Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Molecular and Biochemical Parasitology, 2005, 140, 153-160.	1.1	36
29	The Aminopeptidase Inhibitor CHR-2863 Is an Orally Bioavailable Inhibitor of Murine Malaria. Antimicrobial Agents and Chemotherapy, 2012, 56, 3244-3249.	3.2	35
30	Stronger Activity of Human Immunodeficiency Virus Type 1 Protease Inhibitors against Clinical Isolates of <i>Plasmodium vivax</i> than against Those of <i>P. falciparum</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 2435-2441.	3.2	34
31	Anti- <i>Giardia</i> Drug Discovery: Current Status and Gut Feelings. Journal of Medicinal Chemistry, 2020, 63, 13330-13354.	6.4	34
32	Antimalarial Asexual Stage-Specific and Gametocytocidal Activities of HIV Protease Inhibitors. Antimicrobial Agents and Chemotherapy, 2010, 54, 1334-1337.	3.2	33
33	<i>Plasmodium falciparum</i> : new molecular targets with potential for antimalarial drug development. Expert Review of Anti-Infective Therapy, 2009, 7, 1087-1098.	4.4	32
34	Antiplasmodial and Antioxidant Isofuranonaphthoquinones from the Roots of Bulbine capitata. Planta Medica, 2001, 67, 340-344.	1.3	30
35	Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6114-6117.	2.2	30
36	In vitro growth inhibition of Plasmodium falciparum by retinol at concentrations present in normal human serum. Acta Tropica, 1998, 69, 111-119.	2.0	28

TINA S SKINNER-ADAMS

#	Article	IF	CITATIONS
37	Antimalarial activity of sera from subjects taking HIV protease inhibitors. Aids, 2007, 21, 763-765.	2.2	28
38	Synergistic In Vitro Antimalarial Activity of Omeprazole and Quinine. Antimicrobial Agents and Chemotherapy, 1999, 43, 1304-1306.	3.2	27
39	Malaria transfection and transfection vectors. Trends in Parasitology, 2003, 19, 381-383.	3.3	26
40	Saquinavir Inhibits the Malaria Parasite's Chloroquine Resistance Transporter. Antimicrobial Agents and Chemotherapy, 2012, 56, 2283-2289.	3.2	26
41	Synthesis, Antimalarial Properties, and SAR Studies of Alkoxyureaâ€Based HDAC Inhibitors. ChemMedChem, 2014, 9, 665-670.	3.2	26
42	Total Synthesis of Thiaplakortone A: Derivatives as Metabolically Stable Leads for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2014, 5, 178-182.	2.8	26
43	Antimalarial Isocyano and Isothiocyanato Sesquiterpenes with Tri- and Bicyclic Skeletons from the Nudibranch <i>Phyllidia ocellata</i> . Journal of Natural Products, 2015, 78, 1422-1427.	3.0	26
44	<i>Plasmodium falciparum</i> gametocytes: with a view to a kill. Parasitology, 2013, 140, 1718-1734.	1.5	25
45	Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone A natural product scaffold. Organic and Biomolecular Chemistry, 2015, 13, 1558-1570.	2.8	25
46	Defining the targets of antiparasitic compounds. Drug Discovery Today, 2016, 21, 725-739.	6.4	25
47	Catalyst-Controlled Stereoselective Synthesis Secures the Structure of the Antimalarial Isocyanoterpene Pustulosaisonitrile-1. Journal of Organic Chemistry, 2017, 82, 13313-13323.	3.2	25
48	Structure–Activity and Structure–Toxicity Relationships of Peptoidâ€Based Histone Deacetylase Inhibitors with Dual‣tage Antiplasmodial Activity. ChemMedChem, 2019, 14, 912-926.	3.2	24
49	CLAGï;½9 is located in the rhoptries of Plasmodium falciparum. Parasitology Research, 2004, 93, 64-67.	1.6	22
50	In vitro antimalarial activity of trovafloxacin, a fourth-generation fluoroquinolone. Acta Tropica, 2000, 74, 39-42.	2.0	20
51	A novel inÂvitro image-based assay identifies new drug leads for giardiasis. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 83-89.	3.4	20
52	Activity of bromodomain protein inhibitors/binders against asexual-stage Plasmodium falciparum parasites. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 189-193.	3.4	20
53	HIV-1 Protease Inhibitors and Clinical Malaria: a Secondary Analysis of the AIDS Clinical Trials Group A5208 Study. Antimicrobial Agents and Chemotherapy, 2012, 56, 995-1000.	3.2	17
54	In vitro antimalarial activity of retinoids and the influence of selective retinoic acid receptor antagonists. Acta Tropica, 2003, 87, 345-353.	2.0	16

#	Article	IF	CITATIONS
55	Identification of Potent and Selective Inhibitors of the Plasmodium falciparum M18 Aspartyl Aminopeptidase (PfM18AAP) of Human Malaria via High-Throughput Screening. Journal of Biomolecular Screening, 2014, 19, 1107-1115.	2.6	15
56	A Plasmodium falciparum S33 proline aminopeptidase is associated with changes in erythrocyte deformability. Experimental Parasitology, 2016, 169, 13-21.	1.2	15
57	Adaptation of the [³ H]Hypoxanthine Uptake Assay for <i>In Vitro</i> -Cultured Plasmodium knowlesi Malaria Parasites. Antimicrobial Agents and Chemotherapy, 2016, 60, 4361-4363.	3.2	13
58	Synthesis, biological characterisation and structure activity relationships of aromatic bisamidines active against Plasmodium falciparum. European Journal of Medicinal Chemistry, 2017, 127, 22-40.	5.5	13
59	The Frequency of Malaria Is Similar among Women Receiving either Lopinavir/Ritonavir or Nevirapine-based Antiretroviral Treatment. PLoS ONE, 2012, 7, e34399.	2.5	13
60	Characterization of the effect of retinol on Plasmodium falciparum in vitro. Experimental Parasitology, 2004, 107, 136-144.	1.2	12
61	GATEWAYâ,,¢ vectors for Plasmodium falciparum transfection. Trends in Parasitology, 2003, 19, 17-18.	3.3	11
62	Antiplasmodial activity of the natural product compounds alstonine and himbeline. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 17-22.	3.4	11
63	A Sesquiterpene Isonitrile with a New Tricyclic Skeleton from the Indo-Pacific Nudibranch Phyllidiella pustulosa: Spectroscopic and Computational Studies. Australian Journal of Chemistry, 2020, 73, 129.	0.9	9
64	Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins. Experimental Parasitology, 2019, 198, 7-16.	1.2	8
65	QSAR Classification Models for Prediction of Hydroxamate Histone Deacetylase Inhibitor Activity against Malaria Parasites. ACS Infectious Diseases, 2022, 8, 106-117.	3.8	8
66	Synthesis and Antiplasmodial Evaluation of Analogues Based on the Tricyclic Core of Thiaplakortones A–D. Marine Drugs, 2015, 13, 5784-5795.	4.6	5
67	The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. MBio, 2020, 11, .	4.1	5
68	An ELISA method to assess HDAC inhibitor-induced alterations to P. falciparum histone lysine acetylation. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 249-256.	3.4	3
69	An image-based Pathogen Box screen identifies new compounds with anti-Giardia activity and highlights the importance of assay choice in phenotypic drug discovery. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 12, 60-67.	3.4	3
70	Histone deacetylase inhibitor AR-42 and achiral analogues kill malaria parasites in vitro and in mice. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 118-127.	3.4	3
71	Plasmodium falciparum: Isolate-Specific Radiosensitivity. Experimental Parasitology, 2001, 99, 108-110.	1.2	2