Jie Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9623531/publications.pdf

Version: 2024-02-01

16	850	687363	940533
papers	citations	h-index	g-index
16 all docs	16 docs citations	16 times ranked	720 citing authors
			O

#	Article	IF	CITATIONS
1	Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells. Energy and Environmental Science, 2021, 14, 3044-3052.	30.8	170
2	Delicate Morphology Control Triggers 14.7% Efficiency Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001076.	19.5	100
3	15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor. Energy and Environmental Science, 2021, 14, 5366-5376.	30.8	97
4	Donor Derivative Incorporation: An Effective Strategy toward High Performance Allâ€Smallâ€Molecule Ternary Organic Solar Cells. Advanced Science, 2019, 6, 1901613.	11.2	93
5	15.3% Efficiency Allâ€5mallâ€Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy. Advanced Science, 2021, 8, 2004262.	11.2	76
6	Synergy of Liquidâ€Crystalline Smallâ€Molecule and Polymeric Donors Delivers Uncommon Morphology Evolution and 16.6% Efficiency Organic Photovoltaics. Advanced Science, 2020, 7, 2000149.	11.2	67
7	Energetic Disorder and Activation Energy in Efficient Ternary Organic Solar Cells with Nonfullerene Acceptor Eh″DTBR as the Third Component. Solar Rrl, 2020, 4, 1900403.	5 . 8	47
8	Terminal group engineering for small-molecule donors boosts the performance of nonfullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 2541-2546.	10.3	45
9	Hybrid Cathode Interlayer Enables 17.4% Efficiency Binary Organic Solar Cells. Advanced Science, 2022, 9, e2105575.	11.2	31
10	Enhanced Photovoltaic Performance in D-Ï€-A Copolymers Containing Triisopropylsilylethynyl-Substituted Dithienobenzodithiophene by Modulating the Electron-Deficient Units. Polymers, 2019, 11, 12.	4. 5	28
11	Simple near-Infrared Nonfullerene Acceptors Enable Organic Solar Cells with >9% Efficiency. ACS Applied Materials & Interfaces, 2019, 11, 6717-6723.	8.0	28
12	Self-assembly enables simple structure organic photovoltaics via green-solvent and open-air-printing: Closing the lab-to-fab gap. Materials Today, 2022, 55, 46-55.	14.2	23
13	Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56231-56239.	8.0	15
14	High Sensitivity of Nonâ€Fullerene Organic Solar Cells Morphology and Performance to a Processing Additive. Small, 2022, 18, e2202411.	10.0	13
15	14.7% all-small-molecule organic solar cells enabled by fullerene derivative incorporation. Sustainable Energy and Fuels, 2021, 5, 3593-3597.	4.9	10
16	Cyano-functionalized small-molecule acceptors for high-efficiency wide-bandgap organic solar cells. Journal of Materials Chemistry C, 2020, 8, 9195-9200.	5 . 5	7