Reiko Shinkura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9623398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral Corticosteroids Impair Mucin Production and Alter the Posttransplantation Microbiota in the Gut. Digestion, 2022, 103, 269-286.	2.3	1
2	Integrin CD11b provides a new marker of pre-germinal center IgA+ B cells in murine Peyer's patches. International Immunology, 2022, 34, 249-262.	4.0	1
3	The 49th Annual Meeting of the Japanese Society for Immunology: COVID-19 and Immunity. International Immunology, 2021, 33, 193-196.	4.0	0
4	Gut IgA puts pathogens under pressure. Nature Microbiology, 2021, 6, 826-827.	13.3	1
5	W27 IgA suppresses growth of Escherichia in an in vitro model of the human intestinal microbiota. Scientific Reports, 2021, 11, 14627.	3.3	4
6	Therapeutic immunoglobulin A antibody for dysbiosis-related diseases. International Immunology, 2021, 33, 787-790.	4.0	2
7	Functional production of human antibody by the filamentous fungus Aspergillus oryzae. Fungal Biology and Biotechnology, 2020, 7, 7.	5.1	9
8	MZB1 promotes the secretion of J-chain–containing dimeric IgA and is critical for the suppression of gut inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13480-13489.	7.1	50
9	Intestinal IgA as a modulator of the gut microbiota. Gut Microbes, 2017, 8, 486-492.	9.8	49
10	Accelerated Systemic Autoimmunity in the Absence of Somatic Hypermutation in 564Igi: A Mouse Model of Systemic Lupus with Knocked-In Heavy and Light Chain Genes. Frontiers in Immunology, 2017, 8, 1094.	4.8	16
11	Decreased Taxon-Specific IgA Response in Relation to the Changes of Gut Microbiota Composition in the Elderly. Frontiers in Microbiology, 2017, 8, 1757.	3.5	21
12	Control Mechanism of the Intestinal Bacteria by IgA Antibody. Kagaku To Seibutsu, 2017, 55, 596-601.	0.0	0
13	High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nature Microbiology, 2016, 1, 16103.	13.3	128
14	Myelin Basic Protein as a Novel Genetic Risk Factor in Rheumatoid Arthritis—A Genome-Wide Study Combined with Immunological Analyses. PLoS ONE, 2011, 6, e20457.	2.5	29
15	Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nature Immunology, 2011, 12, 264-270.	14.5	227
16	Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7920-7925.	7.1	38
17	AID-induced T-lymphoma or B-leukemia/lymphoma in a mouse BMT model. Leukemia, 2010, 24, 1018-1024.	7.2	22
18	B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nature Immunology, 2010, 11, 148-154.	14.5	111

REIKO SHINKURA

#	Article	IF	CITATIONS
19	Author's reply: Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. International Immunology, 2010, 22, 213-214.	4.0	0
20	The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2758-2763.	7.1	57
21	AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22375-22380.	7.1	66
22	Molecular mechanism for generation of antibody memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 569-575.	4.0	22
23	Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. International Immunology, 2009, 21, 947-955.	4.0	37
24	Dissociation of <i>in vitro</i> DNA deamination activity and physiological functions of AID mutants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15866-15871.	7.1	32
25	Requirement of Non-canonical Activity of Uracil DNA Glycosylase for Class Switch Recombination. Journal of Biological Chemistry, 2007, 282, 731-742.	3.4	43
26	Msx2-interacting nuclear target protein (Mint) deficiency reveals negative regulation of early thymocyte differentiation by Notch/RBP-J signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1610-1615.	7.1	50
27	Discovery of Activationâ€Induced Cytidine Deaminase, the Engraver of Antibody Memory. Advances in Immunology, 2007, 94, 1-36.	2.2	105
28	Generation of a conditional knockout allele for mammalian Spen protein Mint/SHARP. Genesis, 2007, 45, 300-306.	1.6	37
29	Regulation of AID Function In Vivo. , 2007, 596, 71-81.		12
30	AID to overcome the limitations of genomic information by introducing somatic DNA alterations. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2006, 82, 104-120.	3.8	0
31	Molecular basis for the involvement of thymidine phosphorylase in cancer invasion. International Journal of Molecular Medicine, 2006, 17, 1085.	4.0	3
32	Identification of a Specific Domain Required for Dimerization of Activation-induced Cytidine Deaminase. Journal of Biological Chemistry, 2006, 281, 19115-19123.	3.4	23
33	AID to overcome the limitations of genomic information. Nature Immunology, 2005, 6, 655-661.	14.5	91
34	Deficiency in the Nuclease Activity of Xeroderma Pigmentosum G in Mice Leads to Hypersensitivity to UV Irradiation. Molecular and Cellular Biology, 2004, 24, 2237-2242.	2.3	43
35	De novo protein synthesis is required for activation-induced cytidine deaminase-dependent DNA cleavage in immunoglobulin class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13003-13007.	7.1	39
36	Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1975-1980.	7.1	271

REIKO SHINKURA

#	Article	IF	CITATIONS
37	Growth Retardation, Early Death, and DNA Repair Defects in Mice Deficient for the Nucleotide Excision Repair Enzyme XPF. Molecular and Cellular Biology, 2004, 24, 1200-1205.	2.3	145
38	Uracil DNA Glycosylase Activity Is Dispensable for Immunoglobulin Class Switch. Science, 2004, 305, 1160-1163.	12.6	112
39	Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nature Immunology, 2004, 5, 707-712.	14.5	199
40	WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO Journal, 2003, 22, 3602-3612.	7.8	160
41	The influence of transcriptional orientation on endogenous switch region function. Nature Immunology, 2003, 4, 435-441.	14.5	193
42	Lineage-Restricted Function of Nuclear Factor κB–Inducing Kinase (Nik) in Transducing Signals via Cd40. Journal of Experimental Medicine, 2000, 191, 381-386.	8.5	67
43	Alymphoplasia (aly)-Type Nuclear Factor κB–Inducing Kinase (Nik) Causes Defects in Secondary Lymphoid Tissue Chemokine Receptor Signaling and Homing of Peritoneal Cells to the Gut-Associated Lymphatic Tissue System. Journal of Experimental Medicine, 2000, 191, 1477-1486.	8.5	118
44	Thioredoxin Inhibits Tumor Necrosis Factor- or Interleukin-1-Induced NF- <i>κ</i> B Activation at a Level Upstream of NF- <i>κ</i> B-Inducing Kinase. Antioxidants and Redox Signaling, 2000, 2, 83-92.	5.4	49
45	Mechanism of B1 cell differentiation and migration in GALT. Current Topics in Microbiology and Immunology, 2000, 252, 221-229.	1.1	18
46	IL-7 receptor α+ CD3– cells in the embryonic intestine induces the organizing center of Peyer's patches. International Immunology, 1999, 11, 643-655.	4.0	267
47	Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κb-inducing kinase. Nature Genetics, 1999, 22, 74-77.	21.4	431
48	Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for Sjören's syndrome. European Journal of Immunology, 1996, 26, 2742-2748.	2.9	86
49	Defects of somatic hypermutation and class switching in alymphoplasia (aly) mutant mice. International Immunology, 1996, 8, 1067-1075.	4.0	57
50	Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse Journal of Experimental Medicine, 1994, 180, 111-121.	8.5	168