Arthur Ab Bergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9621723/publications.pdf

Version: 2024-02-01

144 papers 12,077 citations

²⁶⁶³⁰
56
h-index

27406 106 g-index

146 all docs

146
docs citations

146 times ranked 10223 citing authors

#	Article	IF	CITATIONS
1	Mutations in ABCC6 cause pseudoxanthoma elasticum. Nature Genetics, 2000, 25, 228-231.	21.4	804
2	Identification of the gene responsible for Best macular dystrophy. Nature Genetics, 1998, 19, 241-247.	21.4	634
3	Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Human Molecular Genetics, 1998, 7, 355-362.	2.9	475
4	MRP6 (ABCC6) Detection in Normal Human Tissues and Tumors. Laboratory Investigation, 2002, 82, 515-518.	3.7	458
5	Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nature Genetics, 1999, 23, 217-221.	21.4	427
6	Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013, 45, 314-318.	21.4	398
7	Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genetics, 1998, 19, 327-332.	21.4	371
8	Prevalence of Age-Related Macular Degeneration in Europe. Ophthalmology, 2017, 124, 1753-1763.	5. 2	337
9	Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nature Genetics, 2000, 26, 319-323.	21.4	309
10	Complement Factor H Polymorphism, Complement Activators, and Risk of Age-Related Macular Degeneration. JAMA - Journal of the American Medical Association, 2006, 296, 301.	7.4	306
11	Retinitis Pigmentosa. Survey of Ophthalmology, 1999, 43, 321-334.	4.0	254
12	ABCC6–Mediated ATP Secretion by the Liver Is the Main Source of the Mineralization Inhibitor Inorganic Pyrophosphate in the Systemic Circulation—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1985-1989.	2.4	246
13	The 2588Gâ†'C Mutation in the ABCR Gene Is a Mild Frequent Founder Mutation in the Western European Population and Allows the Classification of ABCR Mutations in Patients with Stargardt Disease. American Journal of Human Genetics, 1999, 64, 1024-1035.	6.2	242
14	Isolation of a candidate gene for Norrie disease by positional cloning. Nature Genetics, 1992, 1, 199-203.	21.4	239
15	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	21.4	239
16	ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20206-20211.	7.1	218
17	A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nature Genetics, 2010, 42, 897-901.	21.4	200
18	Mutations in TRPM1 Are a Common Cause of Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2009, 85, 730-736.	6.2	193

#	Article	IF	CITATIONS
19	Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromosome. Nature Genetics, 1995 , 10 , $13-19$.	21.4	190
20	A Genome-Wide Association Study of Optic Disc Parameters. PLoS Genetics, 2010, 6, e1000978.	3.5	187
21	Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Human Molecular Genetics, 1996, 5, 1035-1041.	2.9	186
22	Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Human Molecular Genetics, 2005, 14, 1763-1773.	2.9	184
23	Common genetic variants associated with open-angle glaucoma. Human Molecular Genetics, 2011, 20, 2464-2471.	2.9	152
24	Pseudoxanthoma elasticum: a clinical, histopathological, and molecular update. Survey of Ophthalmology, 2003, 48, 424-438.	4.0	149
25	The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Progress in Retinal and Eye Research, 2013, 37, 31-67.	15.5	149
26	GPR179 Is Required for Depolarizing Bipolar Cell Function and Is Mutated in Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 90, 331-339.	6.2	131
27	Proposal for updating the pseudoxanthoma elasticum classification system and a review of the clinical findings. American Journal of Medical Genetics, Part A, 2010, 152A, 1049-1058.	1.2	128
28	Frequent Mutation in the ABCC6 Gene (R1141X) Is Associated With a Strong Increase in the Prevalence of Coronary Artery Disease. Circulation, 2002, 106, 773-775.	1.6	124
29	Assignment of a Gene for Autosomal Recessive Retinitis Pigmentosa (RP12) to Chromosome 1q31-q32.1 in an Inbred and Genetically Heterogeneous Disease Population. Genomics, 1994, 22, 499-504.	2.9	123
30	Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone–Rod Dystrophy. Ophthalmology, 2012, 119, 819-826.	5.2	115
31	Autosomal Recessive Bestrophinopathy. Ophthalmology, 2013, 120, 809-820.	5.2	115
32	The mutation spectrum of the bestrophin protein - functional implications. Human Genetics, 1999, 104, 383-389.	3.8	100
33	A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Human Genetics, 2001, 108, 91-97.	3.8	99
34	Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochemical and Biophysical Research Communications, 2005, 330, 18-26.	2.1	95
35	Genotype and Phenotype of 101 Dutch Patients with Congenital Stationary Night Blindness. Ophthalmology, 2013, 120, 2072-2081.	5.2	95
36	Complement Component C3 and Risk of Age-Related Macular Degeneration. Ophthalmology, 2009, 116, 474-480.e2.	5.2	89

#	Article	IF	Citations
37	Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 393-406.	5.2	88
38	A Common Polymorphism in the Complement Factor H Gene Is Associated With Increased Risk of Myocardial Infarction. Journal of the American College of Cardiology, 2006, 47, 1568-1575.	2.8	83
39	Analysis of the OA1 gene reveals mutations in only one-third of patients with X-linked ocular albinism. Human Molecular Genetics, 1995, 4, 2319-2325.	2.9	80
40	Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype. International Journal of Epidemiology, 2012, 41, 250-262.	1.9	79
41	The Phenotypic Spectrum of Albinism. Ophthalmology, 2018, 125, 1953-1960.	5.2	78
42	Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. Journal of Medical Genetics, 2005, 42, e67-e67.	3.2	77
43	On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Progress in Retinal and Eye Research, 2019, 70, 55-84.	15.5	77
44	Visual Prognosis in USH2A-Associated Retinitis Pigmentosa Is Worse for Patients with Usher Syndrome Type Ila Than for Those with Nonsyndromic Retinitis Pigmentosa. Ophthalmology, 2016, 123, 1151-1160.	5.2	76
45	Genotypic and Phenotypic Characteristics of CRB1 -Associated Retinal Dystrophies. Ophthalmology, 2017, 124, 884-895.	5.2	75
46	A Locus for Autosomal Recessive Pseudoxanthoma Elasticum, with Penetrance of Vascular Symptoms in Carriers, Maps to Chromosome 16p13.1. Genome Research, 1997, 7, 830-834.	5.5	74
47	Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Human Mutation, 2006, 27, 568-574.	2.5	7 3
48	A New Strategy to Identify and Annotate Human RPE-Specific Gene Expression. PLoS ONE, 2010, 5, e9341.	2.5	72
49	Retinal Degeneration and Ionizing Radiation Hypersensitivity in a Mouse Model for Cockayne Syndrome. Molecular and Cellular Biology, 2007, 27, 1433-1441.	2.3	69
50	Systemic and Ocular Determinants of Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in the European Eye Epidemiology (E3) Population. Ophthalmology, 2018, 125, 1526-1536.	5.2	62
51	Pseudoxanthoma Elasticum Maps to an 820-kb Region of the p13.1 Region of Chromosome 16. Genomics, 1999, 62, 1-10.	2.9	61
52	Development of Refractive Errors—What Can We Learn From Inherited Retinal Dystrophies?. American Journal of Ophthalmology, 2017, 182, 81-89.	3.3	61
53	A Gene for X-Linked Optic Atrophy Is Closely Linked to the Xp11.4-Xp11.2 Region of the X Chromosome. American Journal of Human Genetics, 1997, 61, 934-939.	6.2	60
54	Expanded Clinical Spectrum of Enhanced S-Cone Syndrome. JAMA Ophthalmology, 2013, 131, 1324.	2.5	59

#	Article	IF	CITATIONS
55	Comprehensive Analysis of the Candidate Genes <i>CCL2</i> , <i>CCR2</i> , and <i>TLR4</i> in Age-Related Macular Degeneration., 2008, 49, 364.		58
56	Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. Journal of Molecular Medicine, 2010, 88, 467-475.	3.9	58
57	ABCC6/MRP6 mutations: further insight into the molecular pathology of pseudoxanthoma elasticum. European Journal of Human Genetics, 2003, 11, 215-224.	2.8	57
58	CLINICAL AND GENETIC CHARACTERISTICS OF MALE PATIENTS WITH RPGR-ASSOCIATED RETINAL DYSTROPHIES. Retina, 2019, 39, 1186-1199.	1.7	56
59	Functional annotation of the human retinal pigment epithelium transcriptome. BMC Genomics, 2009, 10, 164.	2.8	52
60	Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium. PLoS ONE, 2013, 8, e83345.	2.5	50
61	GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage. Experimental Eye Research, 2007, 84, 858-867.	2.6	49
62	Does autosomal dominant pseudoxanthoma elasticum exist?. American Journal of Medical Genetics Part A, 2004, 126A, 403-412.	2.4	48
63	Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease. BMC Genomics, 2015, 16, 956.	2.8	48
64	Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration. PLoS ONE, 2015, 10, e0141597.	2.5	47
65	Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum. Journal of Molecular Medicine, 2011, 89, 1125-1135.	3.9	45
66	Localization of a Novel X-Linked Progressive Cone Dystrophy Gene to Xq27: Evidence for Genetic Heterogeneity. American Journal of Human Genetics, 1997, 60, 1468-1473.	6.2	43
67	In patients with pseudoxanthoma elasticum a thicker and more elastic carotid artery is associated with elastin fragmentation and proteoglycans accumulation. Ultrasound in Medicine and Biology, 2004, 30, 1041-1048.	1.5	41
68	The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the <i>RPGR </i> Gene., 2018, 59, 4123.		41
69	Multipoint linkage analysis in X-linked ocular albinism of the Nettleship-Falls type. Human Genetics, 1991, 88, 162-166.	3.8	38
70	Identification of a 5? splice site mutation in the RPGR gene in a family with X-linked retinitis pigmentosa (RP3)., 1999, 13, 141-145.		38
71	Evaluation of the ARMD1 locus on 1q25–31 in patients with age-related maculopathy: genetic variation in laminin genes and in exon 104 of HEMICENTIN-1. Ophthalmic Genetics, 2004, 25, 111-119.	1.2	38
72	<i>Abcc6</i> Deficiency Causes Increased Infarct Size and Apoptosis in a Mouse Cardiac Ischemia-Reperfusion Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2806-2812.	2.4	38

#	Article	IF	CITATIONS
73	Subcellular localization and N-glycosylation of human ABCC6, expressed in MDCKII cells. Biochemical and Biophysical Research Communications, 2003, 308, 263-269.	2.1	37
74	Analysis of the Frequent R1141X Mutation in the ABCC 6 Gene in Pseudoxanthoma Elasticum., 2003, 44, 1824.		36
75	The Complement Component 5 Gene and Age-Related Macular Degeneration. Ophthalmology, 2010, 117, 500-511.	5. 2	36
76	Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1527-1535.	1.9	36
77	Characterization of SCML1, a New Gene in Xp22, with Homology to Developmental Polycomb Genes. Genomics, 1998, 49, 96-102.	2.9	32
78	Course of Visual Decline in Relation to the Best1 Genotype in Vitelliform Macular Dystrophy. Ophthalmology, 2010, 117, 1415-1422.	5.2	32
79	Pseudoxanthoma Elasticum: Cardiac Findings in Patients and Abcc6-Deficient Mouse Model. PLoS ONE, 2013, 8, e68700.	2.5	32
80	Ophthalmic epidemiology in Europe: the "European Eye Epidemiology―(E3) consortium. European Journal of Epidemiology, 2016, 31, 197-210.	5.7	32
81	Diverse prevalence of large deletions within the OA1 gene in ocular albinism type 1 patients from Europe and North America. Human Genetics, 2001, 108 , 51 - 54 .	3.8	31
82	Pseudoxanthoma elasticum: Wide phenotypic variation in homozygotes and no signs in heterozygotes for the c.3775delT mutation in ABCC6. Genetics in Medicine, 2009, 11, 852-858.	2.4	30
83	X-Linked Retinoschisis. Ophthalmology, 2022, 129, 191-202.	5.2	29
84	The Level of Hepatic ABCC6 Expression Determines the Severity of Calcification after Cardiac Injury. American Journal of Pathology, 2014, 184, 159-170.	3.8	28
85	Myocilin mutations in a population-based sample of cases with open-angle glaucoma: the Rotterdam Study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2002, 240, 468-474.	1.9	27
86	The SERPING1 gene and age-related macular degeneration. Lancet, The, 2009, 374, 875-876.	13.7	25
87	Simultaneous Mutation Detection in 90 Retinal Disease Genes in Multiple Patients Using a Custom-designed 300-kb Retinal Resequencing Chip. Ophthalmology, 2011, 118, 160-167.e3.	5 . 2	25
88	Geographic atrophy in age-related macular degeneration and TLR3. New England Journal of Medicine, 2009, 360, 2252-4; author reply 2255-6.	27.0	25
89	X linked progressive cone dystrophy. Localisation of the gene locus to Xp21-p11.1 by linkage analysis British Journal of Ophthalmology, 1994, 78, 103-108.	3.9	23
90	RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features. International Journal of Molecular Sciences, 2020, 21, 835.	4.1	23

#	Article	IF	CITATIONS
91	The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. International Journal of Molecular Sciences, 2021, 22, 7081.	4.1	23
92	Patients with premature coronary artery disease who carry the ABCC6 R1141X mutation have no Pseudoxanthoma Elasticum phenotype. International Journal of Cardiology, 2005, 100, 389-393.	1.7	20
93	Retinitis Pigmentosa, Cutis Laxa, and Pseudoxanthoma Elasticum–Like Skin Manifestations Associated with GGCX Mutations. Journal of Investigative Dermatology, 2014, 134, 2331-2338.	0.7	20
94	Gene expression-based comparison of the human secretory neuroepithelia of the brain choroid plexus and the ocular ciliary body: potential implications for glaucoma. Fluids and Barriers of the CNS, 2014, 11, 2.	5.0	20
95	The Decreasing Prevalence of Nonrefractive Visual Impairment in Older Europeans. Ophthalmology, 2018, 125, 1149-1159.	5.2	20
96	Efficient Molecular Diagnostic Strategy for <i>ABCC6</i> in Pseudoxanthoma Elasticum. Genetic Testing and Molecular Biomarkers, 2004, 8, 292-300.	1.7	19
97	In silico analysis of the molecular machinery underlying aqueous humor production: potential implications for glaucoma. Journal of Clinical Bioinformatics, 2013, 3, 21.	1.2	19
98	Delineation of Novel Autosomal Recessive Mutation in GJA3 and Autosomal Dominant Mutations in GJA8 in Pakistani Congenital Cataract Families. Genes, 2018, 9, 112.	2.4	19
99	A Systematic Review on Transplantation Studies of the Retinal Pigment Epithelium in Animal Models. International Journal of Molecular Sciences, 2020, 21, 2719.	4.1	19
100	An Xp22.1-p22.2 YAC Contig Encompassing the Disease Loci for RS, KFSD, CLS, HYP and RP15: Refined Localization of RS. European Journal of Human Genetics, 1996, 4, 101-104.	2.8	19
101	CLINICAL CHARACTERISTICS AND NATURAL HISTORY OF RHO-ASSOCIATED RETINITIS PIGMENTOSA. Retina, 2021, 41, 213-223.	1.7	18
102	Core circadian clock genes <i>Per1</i> and <i>Per2</i> regulate the rhythm in photoreceptor outer segment phagocytosis. FASEB Journal, 2021, 35, e21722.	0.5	17
103	CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. American Journal of Ophthalmology, 2022, 234, 37-48.	3.3	17
104	Additional Evidence for a Gene Locus for Progressive Cone Dystrophy with Late Rod Involvement in Xp21.1-p11.3. Genomics, 1993, 18, 463-464.	2.9	16
105	A submicroscopic deletion in a patient with isolated X-linked ocular albinism (OA1). Human Molecular Genetics, 1994, 3, 647-648.	2.9	16
106	Pseudoxanthoma Elasticum: the End of the Autosomal Dominant Segregation Myth. Journal of Investigative Dermatology, 2006, 126, 704-705.	0.7	16
107	An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development. Scientific Reports, 2021, 11, 1101.	3.3	16
108	Union Makes Strength: A Worldwide Collaborative Genetic and Clinical Study to Provide a Comprehensive Survey of RD3 Mutations and Delineate the Associated Phenotype. PLoS ONE, 2013, 8, e51622.	2.5	16

#	Article	IF	CITATIONS
109	Refinement of the Localization of the X-Linked Ocular Albinism Gene. Genomics, 1993, 16, 272-273.	2.9	15
110	Nance-Horan Syndrome: Linkage Analysis in a Family from The Netherlands. Genomics, 1994, 21, 238-240.	2.9	15
111	Rev-ErbÎ \pm and Photoreceptor Outer Segments modulate the Circadian Clock in Retinal Pigment Epithelial Cells. Scientific Reports, 2019, 9, 11790.	3.3	14
112	Long-Term Follow-Up of Retinal Degenerations Associated With <i>LRAT</i> Mutations and Their Comparability to Phenotypes Associated With <i>RPE65</i> Mutations. Translational Vision Science and Technology, 2019, 8, 24.	2.2	14
113	The circadian clock regulates RPE-mediated lactate transport via SLC16A1 (MCT1). Experimental Eye Research, 2020, 190, 107861.	2.6	13
114	Mitochondrial Genome Study Identifies Association Between Primary Open-Angle Glaucoma and Variants in MT-CYB, MT-ND4 Genes and Haplogroups. Frontiers in Genetics, 2021, 12, 781189.	2.3	13
115	Abcc6 deficiency in the mouse leads to calcification of collagen fibers in Bruch's membrane. Experimental Eye Research, 2012, 104, 59-64.	2.6	12
116	The Phenotypic and Mutational Spectrum of the FHONDA Syndrome and Oculocutaneous Albinism: Similarities and Differences., 2022, 63, 19.		12
117	Bioinformatic Prioritization and Functional Annotation of GWAS-Based Candidate Genes for Primary Open-Angle Glaucoma. Genes, 2022, 13, 1055.	2.4	12
118	Localization of a novel X-linked congenital stationary night blindness locus: close linkage to the RP3 type retinitis pigmentosa gene region. Human Molecular Genetics, 1995, 4, 931-935.	2.9	11
119	Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 221-234.	1.9	11
120	LONG-TERM FOLLOW-UP OF PATIENTS WITH CHOROIDEREMIA WITH SCLERAL PITS AND TUNNELS AS A NOVEL OBSERVATION. Retina, 2018, 38, 1713-1724.	1.7	11
121	Core-clock genes Period 1 and 2 regulate visual cascade and cell cycle components during mouse eye development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194623.	1.9	10
122	Defining inclusion criteria and endpoints for clinical trials: a prospective crossâ€sectional study in <i>CRB1</i> â€associated retinal dystrophies. Acta Ophthalmologica, 2021, 99, e402-e414.	1.1	10
123	Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics, 2021, 22, 590.	2.8	10
124	Stargardt disease: monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmologica, 2022, 100, 395-402.	1.1	10
125	Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS ONE, 2015, 10, e0138222.	2.5	10
126	Comparative gene expression study and pathway analysis of the human iris- and the retinal pigment epithelium. PLoS ONE, 2017, 12, e0182983.	2.5	9

#	Article	IF	CITATIONS
127	Sodium-lodate Injection Can Replicate Retinal Degenerative Disease Stages in Pigmented Mice and Rats: Non-Invasive Follow-Up Using OCT and ERG. International Journal of Molecular Sciences, 2022, 23, 2918.	4.1	9
128	Incidental finding of alphaâ€methylacylâ€CoA racemase deficiency in a patient with oculocutaneous albinism type 4. American Journal of Medical Genetics, Part A, 2012, 158A, 2931-2934.	1.2	8
129	Molecular Inversion Probe-Based Sequencing of USH2A Exons and Splice Sites as a Cost-Effective Screening Tool in USH2 and arRP Cases. International Journal of Molecular Sciences, 2021, 22, 6419.	4.1	8
130	The Natural History of Leber Congenital Amaurosis and Cone–Rod Dystrophy Associated with Variants in the GUCY2D Gene. Ophthalmology Retina, 2022, 6, 711-722.	2.4	8
131	The Phenotypic Spectrum of Patients with PHARC Syndrome Due to Variants in ABHD12: An Ophthalmic Perspective. Genes, 2021, 12, 1404.	2.4	7
132	Ocular albinism with infertility and lateâ€onset sensorineural hearing loss. American Journal of Medical Genetics, Part A, 2018, 176, 1587-1593.	1.2	6
133	The Lratâ^'/â^' Rat: CRISPR/Cas9 Construction and Phenotyping of a New Animal Model for Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 7234.	4.1	6
134	The SERPING1 gene and age-related macular degeneration. Lancet, The, 2008, 372, 1788-1789.	13.7	5
135	Does the circadian clock make RPE-mediated ion transport "tick―via SLC12A2 (NKCC1)?. Chronobiology International, 2019, 36, 1592-1598.	2.0	5
136	Dark-adapted light response in mice is regulated by a circadian clock located in rod photoreceptors. Experimental Eye Research, 2021, 213, 108807.	2.6	5
137	Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Developmental Biology, 2022, 484, 40-56.	2.0	5
138	Evidence for nonallelic genetic heterogeneity in autosomal recessive retinitis pigmentosa. Genomics, 1992, 14, 811-812.	2.9	4
139	Systematic review of the association between Alzheimer's disease and chronic glaucoma. Clinical Ophthalmology, 2015, 9, 783.	1.8	4
140	Nicotinamide, iRPE-in-a dish, and age-related macular degeneration therapy development. Stem Cell Investigation, 2017, 4, 81-81.	3.0	4
141	The Human Molecular Genetics Network. New England Journal of Medicine, 1995, 333, 1573-1573.	27.0	0
142	Human ciliary epithelia do express genes with retinal progenitor cell characteristics inÂvivo. Experimental Eye Research, 2014, 121, 41.	2.6	0
143	P1â€291: BINDING PROPERTIES OF CURCUMIN IN POSTMORTEM BRAIN TISSUE: TOWARD AMYLOID IMAGING IN THE RETINA?. Alzheimer's and Dementia, 2018, 14, P397.	0.8	O
144	P2â€251: NEUROPATHOLOGICAL HALLMARKS OF ALZHEIMER'S DISEASE IN POSTMORTEM AD RETINAS. Alzheimer's and Dementia, 2018, 14, P770.	0.8	0