List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9620281/publications.pdf Version: 2024-02-01

CHANCWILL

#	Article	IF	CITATIONS
1	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360
2	Global Aromaticity in Macrocyclic Polyradicaloids: Hückel's Rule or Baird's Rule?. Accounts of Chemical Research, 2019, 52, 2309-2321.	15.6	139
3	On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews, 2021, 50, 3238-3262.	38.1	102
4	Formation of Azuleneâ€Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction. Angewandte Chemie - International Edition, 2020, 59, 9026-9031.	13.8	95
5	1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5475-5483.	8.0	80
6	4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for High-Efficiency Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3686-3692.	8.0	75
7	Diazulenoâ€ <i>s</i> â€indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. Angewandte Chemie - International Edition, 2018, 57, 16737-16741.	13.8	69
8	Stable Olympicenyl Radicals and Their π-Dimers. Journal of the American Chemical Society, 2020, 142, 11022-11031.	13.7	63
9	Global Aromaticity in Macrocyclic Cyclopentaâ€Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. Angewandte Chemie - International Edition, 2018, 57, 13052-13056.	13.8	54
10	Triindole-cored star-shaped molecules for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 7657.	10.3	53
11	Benzothiadiazole based conjugated polymers for high performance polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20195-20200.	10.3	52
12	A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chemical Communications, 2016, 52, 469-472.	4.1	48
13	Formation of Azuleneâ€Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction. Angewandte Chemie, 2020, 132, 9111-9116.	2.0	45
14	Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Science Advances, 2021, 7, .	10.3	43
15	1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an ultrathin active layer thickness of 35 nm. Journal of Materials Chemistry C, 2016, 4, 5656-5663.	5.5	42
16	A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. Journal of Materials Chemistry C, 2015, 3, 6979-6985.	5.5	41
17	An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units. Journal of Materials Chemistry A, 2016, 4, 13265-13270.	10.3	41
18	Enhancing the power conversion efficiency of polymer solar cells to 9.26% by a synergistic effect of fluoro and carboxylate substitution. Journal of Materials Chemistry A, 2016, 4, 8097-8104.	10.3	39

#	Article	IF	CITATIONS
19	Side Chain Influence on the Morphology and Photovoltaic Performance of 5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. ACS Applied Materials & Interfaces, 2015, 7, 10710-10717.	8.0	38
20	Facile Synthesis of Nitrogen-Doped [(6.) _{<i>m</i>} 8] _{<i>n</i>} Cyclacene Carbon Nanobelts by a One-Pot Self-Condensation Reaction. Journal of the American Chemical Society, 2021, 143, 2716-2721.	13.7	38
21	Stable Oxindolylâ€Based Analogues of Chichibabin's and Müller's Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 14154-14158.	13.8	34
22	Toward Stable Superbenzoquinone Diradicaloids. Angewandte Chemie - International Edition, 2017, 56, 5012-5016.	13.8	32
23	Machine Vision Automated Chiral Molecule Detection and Classification in Molecular Imaging. Journal of the American Chemical Society, 2021, 143, 10177-10188.	13.7	30
24	From Open‧hell Singlet Diradicaloid to Closed‧hell Global Antiaromatic Macrocycles. Angewandte Chemie - International Edition, 2018, 57, 7166-7170.	13.8	29
25	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	5.5	27
26	Hyperbranched polymer as an acceptor for polymer solar cells. Chemical Communications, 2017, 53, 537-540.	4.1	26
27	Benzidine/Quinoidalâ€Benzidineâ€Linked, Superbenzeneâ€Based Ï€â€Conjugated Chiral Macrocycles and Cyclophanes. Angewandte Chemie - International Edition, 2020, 59, 9727-9735.	13.8	25
28	Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States. Angewandte Chemie - International Edition, 2021, 60, 19790-19796.	13.8	25
29	Diazulenoâ€ <i>s</i> â€indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. Angewandte Chemie, 2018, 130, 16979-16983.	2.0	24
30	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie - International Edition, 2020, 59, 14927-14934.	13.8	24
31	Thiophene-Fused 1,10-Phenanthroline and Its Conjugated Polymers. Macromolecules, 2016, 49, 4088-4094.	4.8	22
32	Facile Synthesis of Aryl-Substituted Cycloarenes via Bismuth(III) Triflate-Catalyzed Cyclization of Vinyl Ethers. CCS Chemistry, 2021, 3, 1445-1452.	7.8	21
33	Surface photografting initiated by benzophenone in water and mixed solvents containing water and ethanol. Journal of Applied Polymer Science, 2012, 123, 1951-1959.	2.6	19
34	Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry C, 2017, 5, 937-942.	5.5	19
35	Dearomatization Approach Toward a Superbenzoquinoneâ€Based Diradicaloid, Tetraradicaloid, and Hexaradicaloid. Angewandte Chemie - International Edition, 2019, 58, 14319-14326.	13.8	19
36	Toward Stable Superbenzoquinone Diradicaloids. Angewandte Chemie, 2017, 129, 5094-5098.	2.0	18

#	Article	IF	CITATIONS
37	The side chain effect on difluoro-substituted dibenzo[a,c]phenazine based conjugated polymers as donor materials for high efficiency polymer solar cells. Polymer Chemistry, 2015, 6, 1613-1618.	3.9	17
38	Global Aromaticity in Macrocyclic Cyclopentaâ€Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. Angewandte Chemie, 2018, 130, 13236-13240.	2.0	17
39	Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials, 2019, 2, 305-311.	5.1	16
40	Fused Quinoidal Dithiopheneâ€Based Helicenes: Synthesis by Intramolecular Radical–Radical Coupling Reactions and Dynamics of Interconversion of Enantiomers. Angewandte Chemie - International Edition, 2021, 60, 10326-10333.	13.8	16
41	Planar Conjugated Polymers Containing 9,10â€Disubstituted Phenanthrene Units for Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2014, 35, 1142-1147.	3.9	14
42	Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely Distributed Side Chains. ACS Applied Materials & Interfaces, 2017, 9, 24020-24026.	8.0	14
43	Real-Space Imaging of a Single-Molecule Monoradical Reaction. Journal of the American Chemical Society, 2020, 142, 13550-13557.	13.7	14
44	Finely designed medium-band-gap polymer donor with judiciously selecting chalcogen atom for high efficiency polymer solar cell. Dyes and Pigments, 2017, 141, 342-347.	3.7	13
45	From Openâ€Shell Singlet Diradicaloid to Closedâ€Shell Global Antiaromatic Macrocycles. Angewandte Chemie, 2018, 130, 7284-7288.	2.0	13
46	One step to perylene monoimides and derived alkynyl bridged photovoltaic acceptors. Dyes and Pigments, 2019, 160, 540-545.	3.7	13
47	Engineering the band gap and energy level of conjugated polymers using a second acceptor unit. Polymer Chemistry, 2014, 5, 5037-5045.	3.9	11
48	Stable Oxindolylâ€Based Analogues of Chichibabin's and Müller's Hydrocarbons. Angewandte Chemie, 2017, 129, 14342-14346.	2.0	10
49	Dearomatization Approach Toward a Superbenzoquinoneâ€Based Diradicaloid, Tetraradicaloid, and Hexaradicaloid. Angewandte Chemie, 2019, 131, 14457-14464.	2.0	10
50	Using ternary blend as a strategy to improve the driving force for charge transfer and facilitate electron transport in polymer solar cells. Organic Electronics, 2019, 65, 419-425.	2.6	10
51	Influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 1-6.	6.2	9
52	Enhancing the performance of polymer solar cells by tuning the drying process of blend films via changing side chains and using solvent additives. Journal of Materials Chemistry C, 2015, 3, 9670-9677.	5.5	7
53	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie, 2020, 132, 15037-15044.	2.0	6
54	Insights into the influence of fluorination positions on polymer donor materials on photovoltaic performance. Organic Electronics, 2017, 46, 115-120.	2.6	5

#	Article	IF	CITATIONS
55	Benzidine/Quinoidalâ€Benzidineâ€Linked, Superbenzeneâ€Based Ï€â€Conjugated Chiral Macrocycles and Cyclophanes. Angewandte Chemie, 2020, 132, 9814-9822.	2.0	5
56	Highly Strained 1,8-Naphthalene-Bridged Cyclic Oligophenylenes and Their Open-Shell Diradical Dications. Organic Letters, 2021, 23, 4860-4863.	4.6	4
57	Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States. Angewandte Chemie, 2021, 133, 19943-19949.	2.0	4
58	Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells. Data in Brief, 2017, 14, 531-537.	1.0	3
59	Fused Quinoidal Dithiopheneâ€Based Helicenes: Synthesis by Intramolecular Radical–Radical Coupling Reactions and Dynamics of Interconversion of Enantiomers. Angewandte Chemie, 2021, 133, 10414-10421.	2.0	3
60	Tailoring long-range superlattice chirality in molecular self-assemblies <i>via</i> weak fluorine-mediated interactions. Physical Chemistry Chemical Physics, 2021, 23, 21489-21495.	2.8	2