Karen Caeyenberghs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/961610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 2020, 10, 100.	4.8	365
2	Brain networks under attack: robustness properties and the impact of lesions. Brain, 2016, 139, 3063-3083.	7.6	244
3	Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Developmental Medicine and Child Neurology, 2017, 59, 1117-1129.	2.1	156
4	Altered structural networks and executive deficits in traumatic brain injury patients. Brain Structure and Function, 2014, 219, 193-209.	2.3	143
5	What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 29.	4.6	138
6	Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data. NeuroImage, 2015, 118, 313-333.	4.2	131
7	Disruption of cerebral networks and cognitive impairment in Alzheimer disease. Neurology, 2013, 80, 1370-1377.	1.1	125
8	Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 2012, 135, 1293-1307.	7.6	117
9	Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. NeuroImage, 2021, 241, 118417.	4.2	117
10	Task complexity and location specific changes of cortical thickness in executive and salience networks after working memory training. NeuroImage, 2016, 130, 48-62.	4.2	105
11	Motor Imagery Development in Primary School Children. Developmental Neuropsychology, 2009, 34, 103-121.	1.4	98
12	Neural underpinnings of impaired predictive motor timing in children with Developmental Coordination Disorder. Research in Developmental Disabilities, 2013, 34, 1478-1487.	2.2	93
13	Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?. NeuroImage, 2017, 160, 113-123.	4.2	93
14	Relations Between Brain Alterations and Clinical Pain Measures in Chronic Musculoskeletal Pain: A Systematic Review. Journal of Pain, 2016, 17, 949-962.	1.4	91
15	Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: A systematic review. Neuroscience and Biobehavioral Reviews, 2018, 92, 304-317.	6.1	91
16	Brainâ€behavior relationships in young traumatic brain injury patients: DTI metrics are highly correlated with postural control. Human Brain Mapping, 2010, 31, 992-1002.	3.6	87
17	Brain connectivity and postural control in young traumatic brain injury patients: A diffusion MRI based network analysis. NeuroImage: Clinical, 2012, 1, 106-115.	2.7	84
18	Dynamics of the Human Structural Connectome Underlying Working Memory Training. Journal of Neuroscience, 2016, 36, 4056-4066.	3.6	82

KAREN CAEYENBERGHS

#	Article	IF	CITATIONS
19	Gray Matter Abnormalities in Idiopathic <scp>P</scp> arkinson's Disease: Evaluation by Diffusional Kurtosis Imaging and Neurite Orientation Dispersion and Density Imaging. Human Brain Mapping, 2017, 38, 3704-3722.	3.6	78
20	Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 2013, 7, 726.	2.0	77
21	Hemispheric lateralization of topological organization in structural brain networks. Human Brain Mapping, 2014, 35, 4944-4957.	3.6	77
22	Brain-behavior relationships in young traumatic brain injury patients: Fractional anisotropy measures are highly correlated with dynamic visuomotor tracking performance. Neuropsychologia, 2010, 48, 1472-1482.	1.6	72
23	Schizophreniaâ€like topological changes in the structural connectome of individuals with subclinical psychotic experiences. Human Brain Mapping, 2015, 36, 2629-2643.	3.6	66
24	Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis. NeuroImage, 2012, 61, 633-650.	4.2	65
25	Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Structure and Function, 2015, 220, 273-290.	2.3	64
26	Increasing convergence between imagined and executed movement across development: evidence for the emergence of movement representations. Developmental Science, 2009, 12, 474-483.	2.4	63
27	Subcortical volume analysis in traumatic brain injury: The importance of the fronto-striato-thalamic circuit in task switching. Cortex, 2014, 51, 67-81.	2.4	62
28	Dynamics of White Matter Plasticity Underlying Working Memory Training: Multimodal Evidence from Diffusion MRI and Relaxometry. Journal of Cognitive Neuroscience, 2017, 29, 1509-1520.	2.3	61
29	Motor imagery training enhances motor skill in children with DCD: A replication study. Research in Developmental Disabilities, 2016, 57, 54-62.	2.2	59
30	Bimanual Coordination and Corpus Callosum Microstructure in Young Adults with Traumatic Brain Injury: A Diffusion Tensor Imaging Study. Journal of Neurotrauma, 2011, 28, 897-913.	3.4	58
31	Diffusion tensor imaging metrics of the corpus callosum in relation to bimanual coordination: Effect of task complexity and sensory feedback. Human Brain Mapping, 2013, 34, 241-252.	3.6	57
32	Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis. NeuroImage: Clinical, 2015, 7, 98-104.	2.7	56
33	Correlations Between White Matter Integrity and Motor Function in Traumatic Brain Injury Patients. Neurorehabilitation and Neural Repair, 2011, 25, 492-502.	2.9	55
34	The structural connectome in traumatic brain injury: A meta-analysis of graph metrics. Neuroscience and Biobehavioral Reviews, 2019, 99, 128-137.	6.1	54
35	Neural signature of developmental coordination disorder in the structural connectome independent of comorbid autism. Developmental Science, 2016, 19, 599-612.	2.4	52
36	Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learning and Memory, 2012, 19, 351-357.	1.3	51

KAREN CAEYENBERGHS

#	Article	IF	CITATIONS
37	Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients. NeuroImage: Clinical, 2015, 7, 240-251.	2.7	50
38	Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: An ALE meta-analysis. Neuroscience and Biobehavioral Reviews, 2018, 86, 77-84.	6.1	50
39	Resting-State Functional Connectivity of the Sensorimotor Network in Individuals with Nonspecific Low Back Pain and the Association with the Sit-to-Stand-to-Sit Task. Brain Connectivity, 2015, 5, 303-311.	1.7	49
40	Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns. Brain, 2009, 132, 684-694.	7.6	46
41	Testing Multiple Coordination Constraints with a Novel Bimanual Visuomotor Task. PLoS ONE, 2011, 6, e23619.	2.5	46
42	Brain Connectomics of Visual-Motor Deficits in Children with Developmental Coordination Disorder. Journal of Pediatrics, 2016, 169, 21-27.e2.	1.8	46
43	Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis. PLoS ONE, 2013, 8, e62133.	2.5	43
44	Disturbed corticoâ€subcortical interactions during motor task switching in traumatic brain injury. Human Brain Mapping, 2013, 34, 1254-1271.	3.6	39
45	Abnormal wiring of the connectome in adults with high-functioning autism spectrum disorder. Molecular Autism, 2015, 6, 65.	4.9	38
46	The Vulnerability to Suicidal Behavior is Associated with Reduced Connectivity Strength. Frontiers in Human Neuroscience, 2015, 9, 632.	2.0	38
47	Evidence for Training-Dependent Structural Neuroplasticity in Brain-Injured Patients: A Critical Review. Neurorehabilitation and Neural Repair, 2018, 32, 99-114.	2.9	35
48	Task switching in traumatic brain injury relates to corticoâ€subcortical integrity. Human Brain Mapping, 2014, 35, 2459-2469.	3.6	34
49	Longitudinal Neuroimaging in Pediatric Traumatic Brain Injury: Current State and Consideration of Factors That Influence Recovery. Frontiers in Neurology, 2019, 10, 1296.	2.4	34
50	Impaired rich club and increased local connectivity in children with traumatic brain injury: Local support for the rich?. Human Brain Mapping, 2018, 39, 2800-2811.	3.6	33
51	Association Between Sensorimotor Impairments and Functional Brain Changes in Patients With Low Back Pain. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 200-211.	1.4	33
52	<scp>ENIGMA</scp> brain injury: Framework, challenges, and opportunities. Human Brain Mapping, 2022, 43, 149-166.	3.6	33
53	Microstructural Integrity of the Superior Cerebellar Peduncle Is Associated with an Impaired Proprioceptive Weighting Capacity in Individuals with Non-Specific Low Back Pain. PLoS ONE, 2014, 9, e100666.	2.5	32
54	Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization. NeuroImage: Clinical, 2015, 9, 506-512.	2.7	31

KAREN CAEYENBERGHS

#	Article	IF	CITATIONS
55	Regional volumes in brain stem and cerebellum are associated with postural impairments in young brainâ€injured patients. Human Brain Mapping, 2015, 36, 4897-4909.	3.6	31
56	Differences in white matter structure and cortical thickness between patients with traumatic and idiopathic chronic neck pain: Associations with cognition and pain modulation?. Human Brain Mapping, 2018, 39, 1721-1742.	3.6	31
5 7	Development of Feedforward Control in a Dynamic Manual Tracking Task. Child Development, 2008, 79, 852-865.	3.0	30
58	The Motor Profile of Primary School-Age Children with a 22q11.2 Deletion Syndrome (22q11.2DS) and an Age- and IQ-Matched Control Group. Child Neuropsychology, 2009, 15, 532-542.	1.3	30
59	Coupling of online control and inhibitory systems in children with atypical motor development: A growth curve modelling study. Brain and Cognition, 2016, 109, 84-95.	1.8	30
60	Network diffusion modeling predicts neurodegeneration in traumatic brain injury. Annals of Clinical and Translational Neurology, 2020, 7, 270-279.	3.7	29
61	Coupling online control and inhibitory systems in children with Developmental Coordination Disorder: Goal-directed reaching. Research in Developmental Disabilities, 2015, 36, 244-255.	2.2	28
62	Deficits in executed and imagined aiming performance in brain-injured children. Brain and Cognition, 2009, 69, 154-161.	1.8	27
63	How to Train an Injured Brain? A Pilot Feasibility Study of Home-Based Computerized Cognitive Training. Games for Health Journal, 2017, 6, 28-38.	2.0	27
64	Toward a Hybrid Model of Developmental Coordination Disorder. Current Developmental Disorders Reports, 2017, 4, 64-71.	2.1	26
65	Functional Connectivity Density and Balance in Young Patients with Traumatic Axonal Injury. Brain Connectivity, 2015, 5, 423-432.	1.7	25
66	Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NeuroImage: Clinical, 2019, 21, 101669.	2.7	25
67	Keeping an eye on imagery: the role of eye movements during motor imagery training. Neuroscience, 2011, 195, 37-44.	2.3	24
68	Reduced motor competence in children with obesity is associated with structural differences in the cerebellar peduncles. Brain Imaging and Behavior, 2018, 12, 1000-1010.	2.1	24
69	Cognitive Training in Young Patients With Traumatic Brain Injury: A Fixel-Based Analysis. Neurorehabilitation and Neural Repair, 2019, 33, 813-824.	2.9	24
70	Dynamics of the connectome in Huntington's disease: A longitudinal diffusion MRI study. NeuroImage: Clinical, 2015, 9, 32-43.	2.7	23
71	Revealing hot executive function in children with motor coordination problems: What's the go?. Brain and Cognition, 2016, 106, 55-64.	1.8	23
72	Navigating the link between processing speed and network communication in the human brain. Brain Structure and Function, 2021, 226, 1281-1302.	2.3	23

#	Article	lF	CITATIONS
73	Prospective control abilities during visuo-manual tracking in children with 22q11.2 Deletion syndrome compared to age- and IQ-matched controls. Research in Developmental Disabilities, 2010, 31, 634-641.	2.2	22
74	Associations between brain morphology and motor performance in chronic neck pain: A wholeâ€brain surfaceâ€based morphometry approach. Human Brain Mapping, 2019, 40, 4266-4278.	3.6	21
75	Differences in brain processing of proprioception related to postural control in patients with recurrent non-specific low back pain and healthy controls. NeuroImage: Clinical, 2019, 23, 101881.	2.7	21
76	Associations between Muscle Strength Asymmetry and Impairments in Gait and Posture in Young Brain-Injured Patients. Journal of Neurotrauma, 2015, 32, 1324-1332.	3.4	20
77	Accelerated intermittent theta burst stimulation in major depression induces decreases in modularity: A connectome analysis. Network Neuroscience, 2019, 3, 157-172.	2.6	20
78	What is the Nature of Motor Impairments in Autism, Are They Diagnostically Useful, and What Are the Implications for Intervention?. Current Developmental Disorders Reports, 2017, 4, 19-27.	2.1	19
79	Do Active Video Games Improve Motor Function in People With Developmental Disabilities? A Meta-analysis of Randomized Controlled Trials. Archives of Physical Medicine and Rehabilitation, 2019, 100, 769-781.	0.9	19
80	Role of Motor Competence and Executive Functioning in Weight Loss: A Study in Children with Obesity. Journal of Developmental and Behavioral Pediatrics, 2018, 39, 642-651.	1.1	18
81	Hub disruption in patients with chronic neck pain: a graph analytical approach. Pain, 2020, 161, 729-741.	4.2	18
82	White matter organization in relation to upper limb motor control in healthy subjects: exploring the added value of diffusion kurtosis imaging. Brain Structure and Function, 2014, 219, 1627-1638.	2.3	17
83	Test–Retest Reliability and Concurrent Validity of anÂfMRI-Compatible Pneumatic Vibrator to StimulateÂMuscle Proprioceptors. Multisensory Research, 2016, 29, 465-492.	1.1	17
84	Regional Gray Matter Volume Loss Is Associated with Gait Impairments in Young Brain-Injured Individuals. Journal of Neurotrauma, 2017, 34, 1022-1034.	3.4	17
85	Impulsivity and body fat accumulation are linked to cortical and subcortical brain volumes among adolescents and adults. Scientific Reports, 2019, 9, 2580.	3.3	17
86	Integrating New Technologies into the Treatment of CP and DCD. Current Developmental Disorders Reports, 2016, 3, 138-151.	2.1	16
87	White matter organization in developmental coordination disorder: A pilot study exploring the added value of constrained spherical deconvolution. NeuroImage: Clinical, 2019, 21, 101625.	2.7	16
88	Weight loss, behavioral change, and structural neuroplasticity in children with obesity through a multidisciplinary treatment program. Human Brain Mapping, 2019, 40, 137-150.	3.6	16
89	The Impact of Traumatic Injury to the Immature Human Brain: A Scoping Review with Insights from Advanced Structural Neuroimaging. Journal of Neurotrauma, 2020, 37, 724-738.	3.4	16
90	Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging and Behavior, 2021, 15, 526-554.	2.1	16

#	Article	IF	CITATIONS
91	Resonance: An Interactive Tabletop Artwork for Co-located Group Rehabilitation and Play. Lecture Notes in Computer Science, 2015, , 420-431.	1.3	16
92	Indirect frontocingulate structural connectivity predicts clinical response to accelerated rTMS in major depressive disorder. Journal of Psychiatry and Neuroscience, 2020, 45, 243-252.	2.4	15
93	White Matter Disruption in Pediatric Traumatic Brain Injury. Neurology, 2021, 97, .	1.1	14
94	Static and Dynamic Visuomotor Task Performance in Children With Acquired Brain Injury. Journal of Head Trauma Rehabilitation, 2009, 24, 363-373.	1.7	13
95	Alterations in brain white matter contributing to ageâ€related slowing of task switching performance: The role of radial diffusivity and magnetization transfer ratio. Human Brain Mapping, 2016, 37, 4084-4098.	3.6	12
96	Associations between Measures of Structural Morphometry and Sensorimotor Performance in Individuals with Nonspecific Low Back Pain. American Journal of Neuroradiology, 2017, 38, 183-191.	2.4	12
97	Longitudinal fixel-based analysis reveals restoration of white matter alterations following balance training in young brain-injured patients. NeuroImage: Clinical, 2021, 30, 102621.	2.7	12
98	Multivariate neurocognitive and emotional profile of a mannosidosis murine model for therapy assessment. Neurobiology of Disease, 2006, 23, 422-432.	4.4	11
99	Structural Brain Connectivity and the Sit-to-Stand-to-Sit Performance in Individuals with Nonspecific Low Back Pain: A Diffusion Magnetic Resonance Imaging-Based Network Analysis. Brain Connectivity, 2016, 6, 795-803.	1.7	11
100	Structural connectivity and weight loss in children with obesity: a study of the "connectobeseâ€. International Journal of Obesity, 2019, 43, 2309-2321.	3.4	11
101	ls diffuse axonal injury on susceptibility weighted imaging a biomarker for executive functioning in adolescents with traumatic brain injury?. European Journal of Paediatric Neurology, 2019, 23, 525-536.	1.6	11
102	Decreased Regional Grey Matter Volume in Women with Chronic Whiplash-Associated Disorders: Relationships with Cognitive Deficits and Disturbed Pain Processing. Pain Physician, 2017, 20, E1025-E1051.	0.4	11
103	Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis. Brain Imaging and Behavior, 2022, 16, 2402-2425.	2.1	11
104	Cognitive training benefit depends on brain injury location in adolescents with traumatic brain injury: a pilot study. European Journal of Physical and Rehabilitation Medicine, 2019, 55, 585-594.	2.2	10
105	Exploratory relationships between cognitive improvements and training induced plasticity in hippocampus and cingulum in a rat model of mild traumatic brain injury: a diffusion MRI study. Brain Imaging and Behavior, 2020, 14, 2281-2294.	2.1	10
106	International Mind, Activities and Urban Places (iMAP) study: methods of a cohort study on environmental and lifestyle influences on brain and cognitive health. BMJ Open, 2020, 10, e036607.	1.9	9
107	Repetitive transcranial magnetic stimulation (rTMS) in autism spectrum disorder: protocol for a multicentre randomised controlled clinical trial. BMJ Open, 2021, 11, e046830.	1.9	9
108	Deficient motor timing in children with neurofibromatosis type 1. Research in Developmental Disabilities, 2014, 35, 3131-3138.	2.2	8

#	Article	IF	CITATIONS
109	Focal application of accelerated iTBS results in global changes in graph measures. Human Brain Mapping, 2019, 40, 432-450.	3.6	8
110	Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging and Behavior, 2021, 15, 555-575.	2.1	8
111	Kinematic movement strategies in primary school children with 22q11.2 Deletion Syndrome compared to age- and IQ-matched controls during visuo-manual tracking. Research in Developmental Disabilities, 2010, 31, 768-776.	2.2	7
112	Does <scp><i>f</i>MRI</scp> repetition suppression reveal mirror neuron activity in the human brain? Insights from univariate and multivariate analysis. European Journal of Neuroscience, 2019, 50, 2877-2892.	2.6	7
113	Children with a learning disorder show prospective control impairments during visuomanual tracking. Research in Developmental Disabilities, 2010, 31, 195-202.	2.2	5
114	The association between mental rotation capacity and motor impairment in children with obesity—an exploratory study. PeerJ, 2019, 7, e8150.	2.0	5
115	Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review. Pain Physician, 2017, 20, 245-260.	0.4	5
116	Apolipoprotein E4 Mediates the Association Between Midlife Dyslipidemia and Cerebral Amyloid in Aging Women. Journal of Alzheimer's Disease, 2019, 68, 105-114.	2.6	4
117	Individual differences in attentional lapses are associated with fiberâ€specific white matter microstructure in healthy adults. Psychophysiology, 2021, 58, e13871.	2.4	4
118	Mapping cognitive deficits in cancer patients after chemotherapy: An Activation Likelihood Estimation meta-analysis of task-related fMRI studies. Brain Imaging and Behavior, 2022, 16, 2320-2334.	2.1	4
119	Hybrid is not a dirty word: Commentary on Wade and Kazeck (2017). Human Movement Science, 2018, 57, 510-515.	1.4	3
120	Prefrontal and temporal cortical thickness in adolescents with traumatic brain injury. Developmental Medicine and Child Neurology, 2019, 61, 672-679.	2.1	3
121	Longitudinal data on cortical thickness before and after working memory training. Data in Brief, 2016, 7, 1143-1147.	1.0	2
122	Association between Motor Planning and the Frontoparietal Network in Children: An Exploratory Multimodal Study. Journal of the International Neuropsychological Society, 2022, 28, 926-936.	1.8	2
123	Co-located (multi-user) virtual rehabilitation of acquired brain injury: feasibility of the Resonance system for upper-limb training. Virtual Reality, 2021, 25, 719-730.	6.1	1
124	Second generation system development and multi-centre studies of the Elements VR-rehab system. , 2015, , .		0