
Daniel L Barber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/961182/publications.pdf Version: 2024-02-01

DANIEL L RADRED

#	Article	IF	CITATIONS
1	Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439, 682-687.	27.8	3,471
2	Molecular Signature of CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity, 2007, 27, 670-684.	14.3	1,695
3	Molecular Signature of CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity, 2007, 27, 824.	14.3	1,193
4	Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science, 2017, 355, 1423-1427.	12.6	753
5	Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, 511, 99-103.	27.8	650
6	Intravascular staining for discrimination of vascular and tissue leukocytes. Nature Protocols, 2014, 9, 209-222.	12.0	612
7	Dynamic T cell migration program provides resident memory within intestinal epithelium. Journal of Experimental Medicine, 2010, 207, 553-564.	8.5	514
8	Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proceedings of the United States of America, 2004, 101, 16004-16009.	7.1	444
9	Cutting Edge: Caspase-1 Independent IL-1β Production Is Critical for Host Resistance to <i>Mycobacterium tuberculosis</i> and Does Not Require TLR Signaling In Vivo. Journal of Immunology, 2010, 184, 3326-3330.	0.8	435
10	Cutting Edge: Rapid In Vivo Killing by Memory CD8 T Cells. Journal of Immunology, 2003, 171, 27-31.	0.8	398
11	Innate and Adaptive Interferons Suppress IL-1α and IL-1β Production by Distinct Pulmonary Myeloid Subsets during Mycobacterium tuberculosis Infection. Immunity, 2011, 35, 1023-1034.	14.3	379
12	Cutting Edge: Gut Microenvironment Promotes Differentiation of a Unique Memory CD8 T Cell Population. Journal of Immunology, 2006, 176, 2079-2083.	0.8	318
13	CD4 T Cell-Derived IFN-Î ³ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathogens, 2016, 12, e1005667.	4.7	280
14	Cutting Edge: Control of <i>Mycobacterium tuberculosis</i> Infection by a Subset of Lung Parenchyma–Homing CD4 T Cells. Journal of Immunology, 2014, 192, 2965-2969.	0.8	272
15	CD4 T Cells Promote Rather than Control Tuberculosis in the Absence of PD-1–Mediated Inhibition. Journal of Immunology, 2011, 186, 1598-1607.	0.8	269
16	Enhancing therapeutic vaccination by blocking PD-1–mediated inhibitory signals during chronic infection. Journal of Experimental Medicine, 2008, 205, 543-555.	8.5	201
17	Visualizing Antigen-Specific and Infected Cells in Situ Predicts Outcomes in Early Viral Infection. Science, 2009, 323, 1726-1729.	12.6	176
18	Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. Journal of Experimental Medicine, 2006, 203, 2263-2269.	8.5	169

DANIEL L BARBER

#	Article	IF	CITATIONS
19	Elevated frequencies of highly activated CD4+ T cells in HIV+ patients developing immune reconstitution inflammatory syndrome. Blood, 2010, 116, 3818-3827.	1.4	159
20	Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21182-21187.	7.1	155
21	Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none. Nature Reviews Microbiology, 2012, 10, 150-156.	28.6	143
22	Tuberculosis following PD-1 blockade for cancer immunotherapy. Science Translational Medicine, 2019, 11, .	12.4	141
23	Redundant and Pathogenic Roles for IL-22 in Mycobacterial, Protozoan, and Helminth Infections. Journal of Immunology, 2010, 184, 4378-4390.	0.8	120
24	Innate and Adaptive Cellular Immune Responses to <i>Mycobacterium tuberculosis</i> Infection. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018424.	6.2	116
25	Cord Factor and Peptidoglycan Recapitulate the Th17-Promoting Adjuvant Activity of Mycobacteria through Mincle/CARD9 Signaling and the Inflammasome. Journal of Immunology, 2013, 190, 5722-5730.	0.8	112
26	Adaptive Tolerance of CD4+ T Cells In Vivo: Multiple Thresholds in Response to a Constant Level of Antigen Presentation. Journal of Immunology, 2001, 167, 2030-2039.	0.8	111
27	Mycobacterial Antigen Driven Activation of CD14++CD16â ^{~,} Monocytes Is a Predictor of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. PLoS Pathogens, 2014, 10, e1004433.	4.7	111
28	Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunology, 2018, 11, 462-473.	6.0	99
29	Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence, 2012, 3, 583-588.	4.4	96
30	Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4ÂT Cells during Tuberculosis. Cell Reports, 2017, 18, 3091-3104.	6.4	94
31	Defining features of protective CD4 T cell responses to Mycobacterium tuberculosis. Current Opinion in Immunology, 2014, 29, 137-142.	5.5	93
32	Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science, 2021, 371, .	12.6	84
33	4-1BB Signaling Synergizes with Programmed Death Ligand 1 Blockade To Augment CD8 T Cell Responses during Chronic Viral Infection. Journal of Immunology, 2011, 187, 1634-1642.	0.8	83
34	Adaptive Tolerance and Clonal Anergy Are Distinct Biochemical States. Journal of Immunology, 2006, 176, 2279-2291.	0.8	77
35	Vaccine-elicited CD4 T cells induce immunopathology after chronic LCMV infection. Science, 2015, 347, 278-282.	12.6	71
36	PD-1 blockade exacerbates <i>Mycobacterium tuberculosis</i> infection in rhesus macaques. Science Immunology, 2021, 6, .	11.9	70

3

DANIEL L BARBER

#	Article	IF	CITATIONS
37	Estimation of the rate of killing by cytotoxic T lymphocytes in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1599-1603.	7.1	68
38	Role of IL-6 in <i>Mycobacterium avium</i> –Associated Immune Reconstitution Inflammatory Syndrome. Journal of Immunology, 2014, 192, 676-682.	0.8	61
39	Th1-driven immune reconstitution disease in Mycobacterium avium–infected mice. Blood, 2010, 116, 3485-3493.	1.4	59
40	Plasma Heme Oxygenase-1 Levels Distinguish Latent or Successfully Treated Human Tuberculosis from Active Disease. PLoS ONE, 2013, 8, e62618.	2.5	58
41	MAIT cell-directed therapy of Mycobacterium tuberculosis infection. Mucosal Immunology, 2021, 14, 199-208.	6.0	57
42	PD-L1 up-regulation restrains Th17 cell differentiation in <i>STAT3</i> loss- and <i>STAT1</i> gain-of-function patients. Journal of Experimental Medicine, 2017, 214, 2523-2533.	8.5	55
43	Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: Immunity interruptus. Seminars in Immunology, 2014, 26, 559-577.	5.6	53
44	Advancing Translational Science for Pulmonary Nontuberculous Mycobacterial Infections. A Road Map for Research. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 947-951.	5.6	53
45	Cutting Edge: Expression of Fcl ³ RIIB Tempers Memory CD8 T Cell Function In Vivo. Journal of Immunology, 2014, 192, 35-39.	0.8	51
46	Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis. Journal of Immunology, 2015, 195, 2763-2773.	0.8	50
47	Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nature Microbiology, 2018, 3, 1198-1205.	13.3	48
48	Revisiting Estimates of CTL Killing Rates In Vivo. PLoS ONE, 2007, 2, e1301.	2.5	42
49	Induction of Inhibitory Receptors on T Cells During <i>Plasmodium vivax</i> Malaria Impairs Cytokine Production. Journal of Infectious Diseases, 2015, 212, 1999-2010.	4.0	42
50	Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action. PLoS ONE, 2011, 6, e15959.	2.5	41
51	Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. Journal of Experimental Medicine, 2021, 218, .	8.5	38
52	Disease extent and antiâ€tubercular treatment response correlates with <i>Mycobacterium tuberculosis</i> â€specific CD4 Tâ€cell phenotype regardless of HIVâ€1 status. Clinical and Translational Immunology, 2020, 9, e1176.	3.8	37
53	Limited Pulmonary Mucosal-Associated Invariant T Cell Accumulation and Activation during Mycobacterium tuberculosis Infection in Rhesus Macaques. Infection and Immunity, 2018, 86, .	2.2	34
54	Mycobacterium tuberculosis-specific CD4 T cells expressing CD153 inversely associate with bacterial load and disease severity in human tuberculosis. Mucosal Immunology, 2021, 14, 491-499.	6.0	33

DANIEL L BARBER

#	Article	IF	CITATIONS
55	Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques. MBio, 2019, 10, .	4.1	29
56	Activating Mucosal-Associated Invariant T Cells Induces a Broad Antitumor Response. Cancer Immunology Research, 2021, 9, 1024-1034.	3.4	29
57	Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis. PLoS Pathogens, 2015, 11, e1005040.	4.7	28
58	Emergence of Polyfunctional Cytotoxic CD4+ T Cells in Mycobacterium avium Immune Reconstitution Inflammatory Syndrome in Human Immunodeficiency Virus-Infected Patients. Clinical Infectious Diseases, 2018, 67, 437-446.	5.8	28
59	The Rate of CD4 T Cell Entry into the Lungs during Mycobacterium tuberculosis Infection Is Determined by Partial and Opposing Effects of Multiple Chemokine Receptors. Infection and Immunity, 2019, 87, .	2.2	28
60	Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. Mucosal Immunology, 2021, 14, 1055-1066.	6.0	23
61	Severe Paradoxical Reaction During Treatment of Disseminated Tuberculosis in a Patient With Neutralizing Anti-IFNÎ ³ Autoantibodies. Clinical Infectious Diseases, 2016, 62, 770-773.	5.8	22
62	Migration-induced cell shattering due to DOCK8 deficiency causes a type 2–biased helper T cell response. Nature Immunology, 2020, 21, 1528-1539.	14.5	21
63	Lethal CD4 T Cell Responses Induced by Vaccination Against Staphylococcus aureus Bacteremia. Journal of Infectious Diseases, 2017, 215, 1231-1239.	4.0	19
64	Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Science Immunology, 2022, 7, eabo0535.	11.9	17
65	Rapid pathogen-specific recruitment of immune effector cells in the skin by secreted toxins. Nature Microbiology, 2022, 7, 62-72.	13.3	17
66	CD4 TÂcells are rapidly depleted from tuberculosis granulomas following acute SIV co-infection. Cell Reports, 2022, 39, 110896.	6.4	15
67	Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Current HIV Research, 2020, 18, 19-28.	0.5	9
68	The Helper T Cell's Dilemma in Tuberculosis. Cell Host and Microbe, 2017, 21, 655-656.	11.0	5
69	Vaccination for Mycobacterium tuberculosis infection: reprogramming CD4 T-cell homing into the lung. Mucosal Immunology, 2017, 10, 318-321.	6.0	5
70	Response to Comments on "Aberrant type 1 immunity drives susceptibility to mucosal fungal infections― Science, 2021, 373, eabi8835.	12.6	5
71	Safety and Immunogenicity of a 4-Component Toxoid-Based Staphylococcus aureus Vaccine in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 621754.	4.8	4