Kei Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9611296/publications.pdf

Version: 2024-02-01

933447 752698 33 489 10 20 h-index citations g-index papers 33 33 33 597 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Auditory changeâ€related cortical response is associated with hypervigilance to pain in healthy volunteers. European Journal of Pain, 2022, 26, 349-355.	2.8	3
2	Effect of Transcranial Electrical Stimulation over the Posterior Parietal Cortex on Tactile Spatial Discrimination Performance. Neuroscience, 2022, 494, 94-103.	2.3	5
3	Effect of Repetitive Passive Movement Before Motor Skill Training on Corticospinal Excitability and Motor Learning Depend on BDNF Polymorphisms. Frontiers in Human Neuroscience, 2021, 15, 621358.	2.0	4
4	Region-Specific Effects of 10-Hz Transcranial Alternate Current Stimulation Over the Left Posterior Parietal Cortex and Primary Somatosensory Area on Tactile Two-Point Discrimination Threshold. Frontiers in Neuroscience, 2021, 15, 576526.	2.8	3
5	The intervention of mechanical tactile stimulation modulates somatosensory evoked magnetic fields and cortical oscillations. European Journal of Neuroscience, 2021, 53, 3433-3446.	2.6	2
6	Grating orientation task trial numbers for short- and long-term tactile discrimination learning. Journal of Clinical Neuroscience, 2021, 93, 195-199.	1.5	1
7	$\hat{l}\pm\hat{a}$ \in tACS over the somatosensory cortex enhances tactile spatial discrimination in healthy subjects with low alpha activity. Brain and Behavior, 2021, 11, e02019.	2.2	9
8	The Number or Type of Stimuli Used for Somatosensory Stimulation Affected the Modulation of Corticospinal Excitability. Brain Sciences, 2021, 11, 1494.	2.3	0
9	Establishment of optimal two-point discrimination test method and consideration of reproducibility. Neuroscience Letters, 2020, 714, 134525.	2.1	13
10	Modulation of inhibitory function in the primary somatosensory cortex and temporal discrimination threshold induced by acute aerobic exercise. Behavioural Brain Research, 2020, 377, 112253.	2.2	8
11	Timing of Modulation of Corticospinal Excitability by Heartbeat Differs with Interoceptive Accuracy. Neuroscience, 2020, 433, 156-162.	2.3	1
12	The after-effect of noisy galvanic vestibular stimulation on postural control in young people: A randomized controlled trial. Neuroscience Letters, 2020, 729, 135009.	2.1	8
13	Time course of bilateral corticospinal tract excitability in the motor-learning process. Neuroscience Letters, 2019, 711, 134410.	2.1	2
14	The effects of mechanical tactile stimulation on corticospinal excitability and motor function depend on pin protrusion patterns. Scientific Reports, 2019, 9, 16677.	3.3	9
15	Comparison of transcranial electrical stimulation regimens for effects on inhibitory circuit activity in primary somatosensory cortex and tactile spatial discrimination performance. Behavioural Brain Research, 2019, 375, 112168.	2.2	25
16	10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behavioural Brain Research, 2019, 368, 111899.	2.2	13
17	The effect of combined transcranial direct current stimulation and peripheral nerve electrical stimulation on corticospinal excitability. PLoS ONE, 2019, 14, e0214592.	2.5	4
18	The effect of gamma tACS over the M1 region and cerebellar hemisphere does not depend on current intensity. Journal of Clinical Neuroscience, 2019, 65, 54-58.	1.5	14

#	Article	IF	CITATIONS
19	Repetitive Passive Movement Modulates Corticospinal Excitability: Effect of Movement and Rest Cycles and Subject Attention. Frontiers in Behavioral Neuroscience, 2019, 13, 38.	2.0	6
20	Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neuroscience Letters, 2019, 694, 64-68.	2.1	36
21	Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimulation, 2018, 11, 85-93.	1.6	53
22	Repetitive Passive Finger Movement Modulates Primary Somatosensory Cortex Excitability. Frontiers in Human Neuroscience, 2018, 12, 332.	2.0	9
23	Transcranial Alternating Current Stimulation With Gamma Oscillations Over the Primary Motor Cortex and Cerebellar Hemisphere Improved Visuomotor Performance. Frontiers in Behavioral Neuroscience, 2018, 12, 132.	2.0	42
24	Somatosensory Inputs Induced by Passive Movement Facilitate Primary Motor Cortex Excitability Depending on the Interstimulus Interval, Movement Velocity, and Joint Angle. Neuroscience, 2018, 386, 194-204.	2.3	7
25	Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation. Brain Topography, 2018, 31, 780-794.	1.8	6
26	Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination. Neuroscience, 2018, 384, 262-274.	2.3	11
27	Regulation of primary motor cortex excitability by repetitive passive finger movement frequency. Neuroscience, 2017, 357, 232-240.	2.3	15
28	Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability. Frontiers in Human Neuroscience, 2017, 11, 146.	2.0	18
29	Effects of Passive Finger Movement on Cortical Excitability. Frontiers in Human Neuroscience, 2017, 11, 216.	2.0	10
30	Influence of Transcranial Direct Current Stimulation to the Cerebellum on Standing Posture Control. Frontiers in Human Neuroscience, 2016, 10, 325.	2.0	32
31	Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Frontiers in Human Neuroscience, 2016, 10, 668.	2.0	105
32	Effect of Paired-Pulse Electrical Stimulation on the Activity of Cortical Circuits. Frontiers in Human Neuroscience, 2015, 9, 671.	2.0	5
33	The modulatory effect of electrical stimulation on the excitability of the corticospinal tract varies according to the type of muscle contraction being performed. Frontiers in Human Neuroscience, 2014, 8, 835.	2.0	10