Vincent Jacques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9610785/publications.pdf

Version: 2024-02-01

40 papers

6,489 citations

28 h-index 289244 40 g-index

42 all docs 42 docs citations

42 times ranked 5948 citing authors

#	Article	IF	CITATIONS
1	Ultralong spin coherence time in isotopically engineered diamond. Nature Materials, 2009, 8, 383-387.	27. 5	1,596
2	Magnetometry with nitrogen-vacancy defects in diamond. Reports on Progress in Physics, 2014, 77, 056503.	20.1	882
3	Hybrid Quantum Circuit with a Superconducting Qubit Coupled to a Spin Ensemble. Physical Review Letters, 2011, 107, 220501.	7.8	335
4	Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Physical Review B, $2011,84,.$	3.2	307
5	A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nature Physics, 2011, 7, 879-883.	16.7	303
6	Current-induced skyrmion generation and dynamics in symmetric bilayers. Nature Communications, 2017, 8, 15765.	12.8	248
7	Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New Journal of Physics, 2012, 14, 103033.	2.9	242
8	Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Physical Review B, 2010, 82, .	3.2	233
9	Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature, 2017, 549, 252-256.	27.8	203
10	The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nature Communications, 2015, 6, 6733.	12.8	183
11	Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Applied Physics Letters, 2012, 100, .	3.3	177
12	Coherence of single spins coupled to a nuclear spin bath of varying density. Physical Review B, 2009, 80, .	3.2	175
13	Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New Journal of Physics, 2009, 11, 013017.	2.9	170
14	Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science, 2014, 344, 1366-1369.	12.6	158
15	Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Physical Review B, 2013, 87, .	3.2	139
16	Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Physical Review B, 2016, 94, .	3.2	135
17	Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4, 2279.	12.8	124
18	High-resolution spectroscopy of single NV defects coupled with nearby <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mn>13</mml:mn></mml:msup></mml:math> C nuclear spins in diamond. Physical Review B, 2012, 85, .	3.2	87

#	Article	IF	CITATIONS
19	Single artificial atoms in silicon emitting at telecom wavelengths. Nature Electronics, 2020, 3, 738-743.	26.0	72
20	Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Physical Review B, 2016, 93, .	3.2	69
21	Narrow-band single-photon emission in the near infrared for quantum key distribution. Optics Express, 2006, 14, 1296.	3.4	68
22	Electric and antiferromagnetic chiral textures at multiferroic domain walls. Nature Materials, 2020, 19, 386-390.	27.5	64
23	Direct measurement of interfacial Dzyaloshinskii-Moriya interaction in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mo> </mml:mo><th>><th>ırow> < mm<mark>l:n</mark></th></th></mml:mrow></mml:math>	> <th>ırow> < mm<mark>l:n</mark></th>	ırow> < mm <mark>l:n</mark>

#	Article	IF	CITATIONS
37	Quantitative study of the response of a single NV defect in diamond to magnetic noise. Physical Review B, 2021, 103, .	3.2	12
38	Nitrogen-vacancy-center imaging of bubble domains in a 6- \tilde{A} film of cobalt with perpendicular magnetization. Journal of Applied Physics, 2014, 115, .	2.5	10
39	Imaging Topological Defects in a Noncollinear Antiferromagnet. Physical Review Letters, 2022, 128, 187201.	7.8	9
40	Coherent population trapping with a controlled dissipation: applications in optical metrology. New Journal of Physics, 2018, 20, 033007.	2.9	8