Balraj Doray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9608375/publications.pdf

Version: 2024-02-01

394421 434195 1,716 31 19 31 citations h-index g-index papers 32 32 32 2122 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure of the human GlcNAc-1-phosphotransferase $\hat{l}\pm\hat{l}^2$ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nature Structural and Molecular Biology, 2022, 29, 348-356.	8.2	6
2	Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nature Communications, 2022, $13, .$	12.8	21
3	Inactivation of the three GGA genes in HeLa cells partially compromises lysosomal enzyme sorting. FEBS Open Bio, 2021, 11, 367-374.	2.3	5
4	A weak COPI binding motif in the cytoplasmic tail of SARSâ€CoVâ€⊋ spike glycoprotein is necessary for its cleavage, glycosylation, and localization. FEBS Letters, 2021, 595, 1758-1767.	2.8	16
5	Elevated mRNA expression and defective processing of cathepsin D in HeLa cells lacking the mannose 6â€phosphate pathway. FEBS Open Bio, 2021, 11, 1695-1703.	2.3	1
6	Antigen Glycosylation Is a Central Regulator of CAR T Cell Efficacy. Blood, 2021, 138, 1721-1721.	1.4	2
7	Diseaseâ€causing missense mutations within the Nâ€terminal transmembrane domain of GlcNAcâ€1â€phosphotransferase impair endoplasmic reticulum translocation or Golgi retention. Human Mutation, 2020, 41, 1321-1328.	2.5	1
8	Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8984-8989.	7.1	68
9	Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy. Molecular Therapy - Methods and Clinical Development, 2017, 5, 59-65.	4.1	27
10	Role of spacerâ€l in the maturation and function of Glc <scp>NA</scp> câ€lâ€phosphotransferase. FEBS Letters, 2017, 591, 47-55.	2.8	8
11	Multiple Domains of GlcNAc-1-phosphotransferase Mediate Recognition of Lysosomal Enzymes. Journal of Biological Chemistry, 2016, 291, 8295-8307.	3.4	39
12	A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. ELife, $2014, 3, .$	6.0	59
13	Impact of Genetic Background on Neonatal Lethality of <i>Gga2</i> Gene-Trap Mice. G3: Genes, Genomes, Genetics, 2014, 4, 885-890.	1.8	8
14	Analysis of Gga Null Mice Demonstrates a Non-Redundant Role for Mammalian GGA2 during Development. PLoS ONE, 2012, 7, e30184.	2.5	23
15	Do <scp>GGA</scp> Adaptors Bind Internal <scp>DXXLL</scp> Motifs?. Traffic, 2012, 13, 1315-1325.	2.7	16
16	Clathrin Regulates the Association of PIPKI \hat{i}^3 661 with the AP-2 Adaptor \hat{i}^2 2 Appendage. Journal of Biological Chemistry, 2009, 284, 13924-13939.	3.4	44
17	Identification of Acidic Dileucine Signals in LRP9 that Interact with Both GGAs and APâ€1/APâ€2. Traffic, 2008, 9, 1551-1562.	2.7	38
18	Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1–GTP. Journal of Cell Biology, 2008, 180, 467-472.	5.2	62

#	Article	IF	CITATIONS
19	The $\hat{ }^3/\hat{ }_1$ and $\hat{ }_1\pm/\hat{ }_1$ Hemicomplexes of Clathrin Adaptors AP-1 and AP-2 Harbor the Dileucine Recognition Site. Molecular Biology of the Cell, 2007, 18, 1887-1896.	2.1	153
20	GGA1 Interacts with the Adaptor Protein AP-1 through a WNSF Sequence in Its Hinge Region. Journal of Biological Chemistry, 2004, 279, 17411-17417.	3.4	34
21	Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biology, 2004, 5, R66.	9.6	257
22	Interaction of the Cation-dependent Mannose 6-Phosphate Receptor with GGA Proteins. Journal of Biological Chemistry, 2002, 277, 18477-18482.	3.4	59
23	Cooperation of GGAs and AP-1 in Packaging MPRs at the Trans-Golgi Network. Science, 2002, 297, 1700-1703.	12.6	227
24	Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8072-8077.	7.1	79
25	N-Terminal Deletions and His-Tag Fusions Dramatically Affect Expression of Cytochrome P450 2C2 in Bacteria. Archives of Biochemistry and Biophysics, 2001, 393, 143-153.	3.0	20
26	Binding of GGA2 to the Lysosomal Enzyme Sorting Motif of the Mannose 6-Phosphate Receptor. Science, 2001, 292, 1716-1718.	12.6	269
27	\hat{l}^3 Subunit of the AP-1 Adaptor Complex Binds Clathrin: Implications for Cooperative Binding in Coated Vesicle Assembly. Molecular Biology of the Cell, 2001, 12, 1925-1935.	2.1	68
28	Substitutions in the C-Terminal Portion of the Catalytic Domain Partially Reverse Assembly Defects Introduced by Mutations in the N-Terminal Linker Sequence of Cytochrome P450 2C2â€. Biochemistry, 1999, 38, 12180-12186.	2.5	2
29	A Conserved Proline-rich Sequence between the N-terminal Signal-anchor and Catalytic Domains Is Required for Assembly of Functional Cytochrome P450 2C2. Archives of Biochemistry and Biophysics, 1998, 350, 233-238.	3.0	22
30	Efficient Assembly of Functional Cytochrome P450 2C2 Requires a Spacer Sequence between the N-terminal Signal Anchor and Catalytic Domains. Journal of Biological Chemistry, 1997, 272, 22891-22897.	3.4	18
31	The Cytoplasmic and N-terminal Transmembrane Domains of Cytochrome P450 Contain Independent Signals for Retention in the Endoplasmic Reticulum. Journal of Biological Chemistry, 1995, 270, 24327-24333.	3.4	64