
Ting Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9608037/publications.pdf Version: 2024-02-01

TINC SHU

#	Article	IF	CITATIONS
1	Studies on Efficient Operation of an X-Band Oversized Slow-Wave HPM Generator in Low Magnetic Field. IEEE Transactions on Plasma Science, 2009, 37, 1552-1557.	1.3	57
2	Analysis and improvement of an X-band magnetically insulated transmission line oscillator. Journal of Applied Physics, 2008, 103, .	2.5	51
3	Designs and Experiments of a Novel Radial Line Slot Antenna for High-Power Microwave Application. IEEE Transactions on Antennas and Propagation, 2013, 61, 4940-4946.	5.1	51
4	A double-band high-power microwave source. Journal of Applied Physics, 2007, 102, .	2.5	48
5	Experimental Investigation of an Improved MILO. IEEE Transactions on Plasma Science, 2007, 35, 1075-1080.	1.3	48
6	Repetition rate operation of an improved magnetically insulated transmission line oscillator. Physics of Plasmas, 2008, 15, 083102.	1.9	47
7	Simulation Investigation of an Improved MILO. IEEE Transactions on Plasma Science, 2007, 35, 379-383.	1.3	46
8	An electron-beam accelerator based on spiral water PFL. Laser and Particle Beams, 2007, 25, 593-599.	1.0	42
9	A high power Ka band millimeter wave generator with low guiding magnetic field. Physics of Plasmas, 2010, 17, 083104.	1.9	41
10	Investigation of a 1.2-GHz Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2011, 39, 540-544.	1.3	37
11	Successful Suppression of Pulse Shortening in an ⁢inline-formula> ⁢tex-math notation="LaTeX">\$X\$ -Band Overmoded Relativistic Backward-Wave Oscillator With Pure <inline-formula> <tex-math notation="LaTeX">\$mathrm{TM}_{01}\$ </tex-math </inline-formula> Mode Output. IEEE	1.3	36
12	Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field. Physics of Plasmas, 2011, 18, .	1.9	34
13	Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier. Scientific Reports, 2016, 6, 30657.	3.3	32
14	Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices. Physics of Plasmas, 2009, 16, .	1.9	31
15	Generation of gigawatt level beat waves. Applied Physics Letters, 2010, 96, 234102.	3.3	31
16	A Novel Dual-Frequency Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2009, 37, 2041-2047.	1.3	29
17	Design of a Concentric Array Radial Line Slot Antenna for High-Power Microwave Application. IEEE Transactions on Plasma Science, 2015, 43, 3527-3529.	1.3	29
18	An Improved X-Band Triaxial Klystron Amplifier for Gigawatt Long-Pulse High-Power Microwave Generation. IEEE Electron Device Letters, 2017, 38, 270-272.	3.9	28

Тілс Ѕни

#	Article	IF	CITATIONS
19	Gigawatt-Class Radiation of \${m TM}_{01}\$ Mode From a Ku-Band Overmoded Cerenkov-Type High-Power Microwave Generator. IEEE Transactions on Plasma Science, 2014, 42, 1567-1572.	1.3	26
20	Experimental demonstration of a compact high efficient relativistic magnetron with directly axial radiation. Physics of Plasmas, 2012, 19, .	1.9	23
21	A long-pulse repetitive operation magnetically insulated transmission line oscillator. Review of Scientific Instruments, 2014, 85, 053512.	1.3	23
22	Complex magnetically insulated transmission line oscillator. Physics of Plasmas, 2008, 15, 083108.	1.9	22
23	Theoretical investigation of the fundamental mode frequency of A6 magnetron. Journal of Applied Physics, 2009, 105, 083310.	2.5	20
24	Gigawatt-class radiation generated by a Ka-band overmoded Cherenkov-type high power millimeter wave generator. Review of Scientific Instruments, 2015, 86, 084706.	1.3	20
25	A metal-dielectric cathode. Journal of Applied Physics, 2008, 104, 023304.	2.5	19
26	Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes. Journal of Applied Physics, 2013, 113, .	2.5	19
27	Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure. Physics of Plasmas, 2009, 16, 113104.	1.9	17
28	Simultaneous operation of X band gigawatt level high power microwaves. Laser and Particle Beams, 2010, 28, 35-44.	1.0	17
29	Time evolution of the two-dimensional expansion velocity distributions of the cathode plasma in pulsed high-power diodes. Laser and Particle Beams, 2013, 31, 129-134.	1.0	17
30	Combining microwave beams with high peak power and long pulse duration. Physics of Plasmas, 2010, 17, 033301.	1.9	16
31	Theoretical investigation of the fundamental mode frequency of the magnetically insulated transmission line oscillator. Physics of Plasmas, 2008, 15, .	1.9	15
32	An improved X-band magnetically insulated transmission line oscillator. Physics of Plasmas, 2009, 16, .	1.9	15
33	Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes. Physics of Plasmas, 2012, 19, .	1.9	15
34	Linearly polarised radial line slot antenna for highâ€power microwave application. IET Microwaves, Antennas and Propagation, 2017, 11, 680-684.	1.4	15
35	A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications. AIP Advances, 2017, 7, .	1.3	12
36	Suppression of the asymmetric modes for experimentally achieving gigawatt-level radiation from aKu-band Cerenkov type oscillator. Review of Scientific Instruments, 2014, 85, 084701.	1.3	11

Тімс Ѕни

#	Article	IF	CITATIONS
37	A Novel -TEM Mixed-Mode Converter. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 1163-1169.	4.6	11
38	Tunable circularly-polarized turnstile-junction mode converter for high-power microwave applications. Chinese Physics B, 2018, 27, 068401.	1.4	11
39	Mode composition analysis on experimental results of a Gigawatt-class Ka-band overmoded Cerenkov oscillator. Physics of Plasmas, 2014, 21, 073105.	1.9	9
40	Breakdown characteristics of niobate glass-ceramic under pulsed condition. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 275-280.	2.9	8
41	A high-efficiency relativistic magnetron with the filled dielectric. Physics of Plasmas, 2016, 23, .	1.9	8
42	Coupling output of multichannel high power microwaves. Physics of Plasmas, 2010, 17, 123110.	1.9	7
43	Investigation on the generation of high voltage quasi-square pulses with a specific two-node PFN-Marx circuit. Review of Scientific Instruments, 2020, 91, 024702.	1.3	7
44	A Four-Stage High-Voltage Transmission Line Pulse Transformer for Transforming a Quasi-Rectangular Pulse. IEEE Transactions on Plasma Science, 2013, 41, 585-589.	1.3	6
45	A compact 4 GW pulse generator based on pulse forming network-Marx for high-power microwave application. Review of Scientific Instruments, 2021, 92, 064707.	1.3	6
46	Investigation of a high impedance magnetically insulated transmission line oscillator with hollow load. Physics of Plasmas, 2012, 19, 093113.	1.9	5
47	Theoretical investigation of the dielectric-filled relativistic magnetron. Physics of Plasmas, 2016, 23, .	1.9	5
48	Preliminary experimental investigation of an X-band Cerenkov-type high power microwave oscillator without guiding magnetic field. Review of Scientific Instruments, 2017, 88, 024708.	1.3	5
49	Matching Conditions of the RKA Input Cavity Based on the Cavity Absorbing Property Under Intense Beam Loading. IEEE Transactions on Plasma Science, 2012, 40, 3121-3126.	1.3	4
50	An efficient gigawatt level X-band Cerenkov type oscillator without guiding magnetic field. Physics of Plasmas, 2014, 21, 073106.	1.9	4
51	A direct density modulation cathode in magnetron. Physics of Plasmas, 2013, 20, .	1.9	2
52	A high power millimeter-wave source operated at low magnetic field. , 2008, , .		0
53	Gigawatt-class radiation of TM <inf>01</inf> mode from a Ku-band overmoded Cerenkov-type high power microwave generator. , 2014, , .		0
54	Factors influencing the temporal growth rate of the high order TMOn modes in the Ka-band overmoded Cherenkov oscillator. Physics of Plasmas, 2015, 22, 063101.	1.9	0

Тілс Ѕни

#	Article	IF	CITATIONS
55	Reflection measurement of waveguide-injected high-power microwave antennas. Review of Scientific Instruments, 2015, 86, 124701.	1.3	Ο
56	Efficiency-improved high power virtual cathode oscillator with coaxial waveguide. , 2016, , .		0
57	Design and testing of a coil-unit barrel for helical coil electromagnetic launcher. Review of Scientific Instruments, 2018, 89, 014706.	1.3	Ο
58	DesignÂof a tunable turnstile mode converter for high-power microwave applications. Review of Scientific Instruments, 2021, 92, 104708.	1.3	0
59	Research on coaxial transit time oscillator with low magnetic field and high efficiency. AIP Advances, 2022, 12, 075017.	1.3	0