Baleeva Ns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607707/publications.pdf

Version: 2024-02-01

		623734	610901
59	678	14	24
papers	citations	h-index	24 g-index
59	59	59	555
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Environment-sensitive fluorogens based on a GFP chromophore structural motif. Dyes and Pigments, 2022, 198, 110033.	3.7	8
2	Selective Synthesis of 3â€Alkylâ€⊋â€thiohydantoins from Azidoacetamides and Carbon Disulfide. ChemistrySelect, 2022, 7, .	1.5	0
3	BF ₃ Mediated [1,5]â€Hydride Shift Triggered Cyclization: Thioethers Join the Game. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
4	Synthesis of julolidine derivatives via SnCl4-promoted spirocyclization of (1-alkyltetrahydroquinolin-8-yl)methylidene-1H-imidazol-5(4H)-ones. Chemistry of Heterocyclic Compounds, 2022, 58, 255-259.	1.2	1
5	Structure-based rational design of an enhanced fluorogen-activating protein for fluorogens based on GFP chromophore. Communications Biology, 2022, 5, .	4.4	5
6	Color Tuning of Fluorogens for FAST Fluorogenâ€Activating Protein. Chemistry - A European Journal, 2021, 27, 3986-3990.	3.3	18
7	Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state. Physical Chemistry Chemical Physics, 2021, 23, 14636-14648.	2.8	15
8	Imidazol-5-ones as a substrate for [1,5]-hydride shift triggered cyclization. New Journal of Chemistry, 2021, 45, 1805-1808.	2.8	11
9	Developing Bright Green Fluorescent Protein (GFP)â€like Fluorogens for Liveâ€Cell Imaging with Nonpolar Proteinâ^'Chromophore Interactions. Chemistry - A European Journal, 2021, 27, 8946-8950.	3.3	16
10	Synthesis of spiro[imidazole-4,3'-quinolin]ones from [2-(dimethylamino)benzylidene]-2-(methylsulfanyl)imidazolones. Chemistry of Heterocyclic Compounds, 2021, 57, 695-699.	1.2	4
11	Xanthates as Thiol Surrogates for Nucleophilic Substitution with Aryl Halides. European Journal of Organic Chemistry, 2021, 2021, 4350-4357.	2.4	5
12	Active orbital preservation for multiconfigurational self-consistent field. Journal of Chemical Physics, 2021, 155, 071103.	3.0	2
13	Probing GFP Chromophore Analogs as Anti-HIV Agents Targeting LTR-III G-Quadruplex. Biomolecules, 2021, 11, 1409.	4.0	7
14	<i>O</i> â€Alkylation Redirected Condensation of 5â€Hydroxyâ€1,2â€oxazineâ€6â€ones with Primary Amines for Synthesis of 5â€Hydroxyiminopyridineâ€2,6(1 <i>H</i> ,3 <i>H</i>)â€diones. ChemistrySelect, 2021, 6, 8938-8941.	.1.5	3
15	Styrene Derivatives of Indole and Pyranone as Fluorogenic Substrates for FAST Protein. Russian Journal of Bioorganic Chemistry, 2021, 47, 334-337.	1.0	1
16	A Thiophene Analog of the GFP Chromophore As Fluorogen for FAST Protein. Russian Journal of Bioorganic Chemistry, 2021, 47, 1118-1121.	1.0	2
17	Conformationally Locked 5-Benzylidene-4H-Imidazolthion as a Fluorogenic Dye. Russian Journal of Bioorganic Chemistry, 2021, 47, 1352-1355.	1.0	O
18	Designing Red-Shifted Molecular Emitters Based on the Annulated Locked GFP Chromophore Derivatives. International Journal of Molecular Sciences, 2021, 22, 13645.	4.1	2

#	Article	IF	CITATIONS
19	Synthesis and Optical Properties of the Conformationally Locked Indole and Indoline Derivatives of the GFP Chromophore. Russian Journal of Bioorganic Chemistry, 2020, 46, 862-865.	1.0	O
20	Convenient and Versatile Synthetic Protocol for Arylideneâ€1 <i>H</i> â€imidazolâ€5(4 <i>H</i>)â€ones. ChemistrySelect, 2020, 5, 7000-7003.	1.5	2
21	Synthesis and Optical Properties of the New Kaede Chromophore Analog. Russian Journal of Bioorganic Chemistry, 2020, 46, 120-123.	1.0	3
22	Ultrafast excited-state proton transfer dynamics in dihalogenated non-fluorescent and fluorescent GFP chromophores. Journal of Chemical Physics, 2020, 152, 021101.	3.0	14
23	Short Duplex Module Coupled to G-Quadruplexes Increases Fluorescence of Synthetic GFP Chromophore Analogues. Sensors, 2020, 20, 915.	3.8	1
24	6,7-Dialcoxy-Benzothiophene Derivatives as the Basis for Synthesis of Fluorescent Sensors for Reactive Oxygen Species. Russian Journal of Bioorganic Chemistry, 2020, 46, 1289-1292.	1.0	2
25	Synthesis and Chemical Transformations of 7-Hydroxybicyclo[3.3.1]nonane-3-carbohydrazide. Russian Journal of Organic Chemistry, 2020, 56, 1942-1951.	0.8	0
26	Naphthalene derivatives of a conformationally locked GFP chromophore with large stokes shifts. Tetrahedron Letters, 2019, 60, 150963.	1.4	5
27	Synthesis of spirocyclic pyrrolidines from cyclopentylideneacetic acid derivatives. Chemistry of Heterocyclic Compounds, 2019, 55, 676-678.	1.2	2
28	Nitroacetic Esters in the Regioselective Synthesis of Isoxazole-3,5-dicarboxylic Acid Derivatives. Journal of Organic Chemistry, 2019, 84, 15417-15428.	3.2	13
29	Designing redder and brighter fluorophores by synergistic tuning of ground and excited states. Chemical Communications, 2019, 55, 2537-2540.	4.1	40
30	Redâ€Shifted Substrates for FAST Fluorogenâ€Activating Protein Based on the GFPâ€Like Chromophores. Chemistry - A European Journal, 2019, 25, 9592-9596.	3.3	37
31	Pyridine analogue of fluorescent protein chromophore: Fluorogenic dye suitable for mitochondria staining. Dyes and Pigments, 2019, 170, 107550.	3.7	15
32	Photoinduced Proton Transfer of GFP-Inspired Fluorescent Superphotoacids: Principles and Design. Journal of Physical Chemistry B, 2019, 123, 3804-3821.	2.6	32
33	Excited-state locked amino analogues of the green fluorescent protein chromophore with a giant Stokes shift. RSC Advances, 2019, 9, 38730-38734.	3.6	8
34	Enamine–azide [2+3]-cycloaddition as a method to introduce functional groups into fluorescent dyes. Tetrahedron Letters, 2019, 60, 456-459.	1.4	5
35	Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. Journal of Physical Chemistry Letters, 2018, 9, 1958-1963.	4.6	37
36	Red-Shifted Aminated Derivatives of GFP Chromophore for Live-Cell Protein Labeling with Lipocalins. International Journal of Molecular Sciences, 2018, 19, 3778.	4.1	15

#	Article	IF	Citations
37	Separation of the 5- and 6-Carboxy Regioisomers of ROX and JOE Dyes with Examples of N-(3-Azidopropyl)amide Synthesis. SynOpen, 2018, 02, 0240-0245.	1.7	2
38	Derivatives of Azidocinnamic Acid in the Synthesis of 2-Amino-4-Arylidene-1H-Imidazol-5(4H)-Ones. Chemistry of Heterocyclic Compounds, 2018, 54, 625-629.	1.2	5
39	Azidoacetic Acid Amides in the Synthesis of Substituted Arylideneâ€1â€ <i>H</i> à€imidazolâ€5â€(4 <i>H</i>)â€c ChemistrySelect, 2018, 3, 8593-8596.	nes. 1.5	11
40	The Role of C2-Substituents in the Imidazolone Ring in the Degradation of GFP Chromophore Derivatives. Russian Journal of Bioorganic Chemistry, 2018, 44, 354-357.	1.0	0
41	Mechanism and color modulation of fungal bioluminescence. Science Advances, 2017, 3, e1602847.	10.3	74
42	Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chemical Biology, 2017, 12, 1867-1873.	3.4	6
43	Synthesis of 2-arylidene-6,7-dihydroimidazo[1,2-a]pyrazine-3,8(2H,5H)-diones by oxidation of 4-arylidene-2-methyl-1H-imidazol-5(4H)-ones with selenium dioxide. Chemistry of Heterocyclic Compounds, 2017, 53, 930-933.	1.2	3
44	The Sonogashira reaction as a new method for the modification of borated analogues of the green fluorescence protein chromophore. Russian Journal of Bioorganic Chemistry, 2017, 43, 612-615.	1.0	3
45	The Role of <i>N</i> >â€Substituents in Radiationless Deactivation of Aminated Derivatives of a Locked GFP Chromophore. European Journal of Organic Chemistry, 2017, 2017, 5219-5224.	2.4	13
46	Unveiling Structural Motions of a Highly Fluorescent Superphotoacid by Locking and Fluorinating the GFP Chromophore in Solution. Journal of Physical Chemistry Letters, 2017, 8, 5921-5928.	4.6	40
47	Pyridine derivatives as ligands of metal complexes for the peroxidation of organosulfur compounds. Theoretical Foundations of Chemical Engineering, 2017, 51, 563-566.	0.7	5
48	pH-Sensitive fluorophores from locked GFP chromophores by a non-alternant analogue of the photochemical meta effect. Physical Chemistry Chemical Physics, 2016, 18, 26703-26711.	2.8	9
49	Synthesis and properties of 5-methylidene-3,5-dihydro-4H-imidazol-4-ones (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 444-446.	1.2	24
50	Conformationally locked GFP chromophore derivatives as potential fluorescent sensors. Russian Journal of Bioorganic Chemistry, 2016, 42, 453-456.	1.0	4
51	Conformationally locked chromophores of CFP and Sirius protein. Tetrahedron Letters, 2016, 57, 3043-3045.	1.4	12
52	Synthesis of novel fluorescent 12a-aryl substituted indoxylisoquinolines via aryne-induced domino process. RSC Advances, 2016, 6, 12642-12646.	3.6	13
53	Bioinspired Fluorescent Dyes Based on a Conformationally Locked Chromophore of the Fluorescent Protein Kaede. European Journal of Organic Chemistry, 2015, 2015, 5716-5721.	2.4	36
54	Reversible condensation of 4-arylidene-1,2-dimethyl-1H-imidazol-5(4H)-ones with aromatic acyl chlorides. Chemistry of Heterocyclic Compounds, 2015, 51, 944-947.	1,2	1

#	Article	IF	CITATIONS
55	Redâ€Shifted Fluorescent Aminated Derivatives of a Conformationally Locked GFP Chromophore. Chemistry - A European Journal, 2014, 20, 13234-13241.	3.3	68
56	Oxidative desulfurization of catalytically cracked gasoline with hydrogen peroxide. Petroleum Chemistry, 2013, 53, 201-204.	1.4	8
57	Complex formation of crown ethers with $\hat{l}\pm$ -amino acids: Estimation by NMR spectroscopy. Russian Journal of Organic Chemistry, 2013, 49, 1386-1396.	0.8	1
58	Synthesis and catalytic properties of niobium indenyl peroxo complexes. Russian Journal of General Chemistry, 2012, 82, 1118-1121.	0.8	3
59	Novel Benzothiophene-Based Fluorescent Dye Exhibiting a Large Stokes Shift. Synlett, 0, , .	1.8	1