
Andrea Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9607243/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatially and Temporally Controllable BMP-2 and TGF-β ₃ Double Release From Polycaprolactone Fiber Scaffolds via Chitosan-Based Polyelectrolyte Coatings. ACS Biomaterials Science and Engineering, 2024, 10, 89-98.	5.2	3
2	Varying the sustained release of BMPâ€⊋ from chitosan nanogelâ€functionalized polycaprolactone fiber mats by different polycaprolactone surface modifications. Journal of Biomedical Materials Research - Part A, 2021, 109, 600-614.	4.0	13
3	ELISA- and Activity Assay-Based Quantification of BMP-2 Released In Vitro Can Be Biased by Solubility in "Physiological―Buffers and an Interfering Effect of Chitosan. Pharmaceutics, 2021, 13, 582.	4.5	2
4	The inflammatory signalling mediator TAK1 mediates lymphocyte recruitment to lipopolysaccharide-activated murine mesenchymal stem cells through interleukin-6. Molecular and Cellular Biochemistry, 2021, 476, 3655-3670.	3.1	3
5	Refolding, purification, and characterization of constitutive-active human-Smad8 produced as inclusion bodies in ClearColi® BL21 (DE3). Protein Expression and Purification, 2021, 184, 105878.	1.3	2
6	Blending chitosanâ€gâ€poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications. Journal of Applied Polymer Science, 2020, 137, 48650.	2.6	20
7	Possibilities and limitations of electrospun chitosanâ€coated polycaprolactone grafts for rotator cuff tear repair. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 186-197.	2.7	16
8	Cell culture media notably influence properties of human mesenchymal stroma/stem-like cells from different tissues. Cytotherapy, 2020, 22, 653-668.	0.7	15
9	Gap Junction Dependent Cell Communication Is Modulated During Transdifferentiation of Mesenchymal Stem/Stromal Cells Towards Neuron-Like Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 869.	3.7	13
10	Regeneration of Damaged Tendon-Bone Junctions (Entheses)—TAK1 as a Potential Node Factor. International Journal of Molecular Sciences, 2020, 21, 5177.	4.1	14
11	Limited Potential or Unfavorable Manipulations? Strategies Toward Efficient Mesenchymal Stem/Stromal Cell Applications. Frontiers in Cell and Developmental Biology, 2020, 8, 316.	3.7	19
12	Heparin Anticoagulant for Human Bone Marrow Does Not Influence In Vitro Performance of Human Mesenchymal Stromal Cells. Cells, 2020, 9, 1580.	4.1	4
13	Sustained release of TGF-β3 from polysaccharide nanoparticles induces chondrogenic differentiation of human mesenchymal stromal cells. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110843.	5.0	10
14	Vascularization and biocompatibility of poly(ε-caprolactone) fiber mats for rotator cuff tear repair. PLoS ONE, 2020, 15, e0227563.	2.5	18
15	Alginate-encapsulated brain-derived neurotrophic factor–overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons. Journal of Tissue Engineering, 2020, 11, 204173142091131.	5.5	24
16	Title is missing!. , 2020, 15, e0227563.		0
17	Title is missing!. , 2020, 15, e0227563.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0227563.		Ο
20	Title is missing!. , 2020, 15, e0227563.		0
21	Title is missing!. , 2020, 15, e0227563.		Ο
22	BDNFâ€overexpressing human mesenchymal stem cells mediate increased neuronal protection <i>in vitro</i> . Journal of Neuroscience Research, 2019, 97, 1414-1429.	2.9	34
23	Stem Cell Based Drug Delivery for Protection of Auditory Neurons in a Guinea Pig Model of Cochlear Implantation. Frontiers in Cellular Neuroscience, 2019, 13, 177.	3.7	34
24	In vivo analysis of vascularization and biocompatibility of electrospun polycaprolactone fibre mats in the rat femur chamber. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1190-1202.	2.7	29
25	Stability and Biological Activity of E. coli Derived Soluble and Precipitated Bone Morphogenetic Protein-2. Pharmaceutical Research, 2019, 36, 184.	3.5	12
26	Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Scientific Reports, 2019, 9, 17319.	3.3	8
27	Biological Properties of Cells Other Than HSCs. , 2019, , 57-60.		0
28	Properties of dimeric, disulfide-linked rhBMP-2 recovered from E. coli derived inclusion bodies by mild extraction or chaotropic solubilization and subsequent refolding. Process Biochemistry, 2018, 67, 80-87.	3.7	15
29	Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer. Colloids and Surfaces B: Biointerfaces, 2018, 163, 309-320.	5.0	29
30	Differential Expression of Cholinergic System Components in Human Induced Pluripotent Stem Cells, Bone Marrow-Derived Multipotent Stromal Cells, and Induced Pluripotent Stem Cell-Derived Multipotent Stromal Cells. Stem Cells and Development, 2018, 27, 166-183.	2.1	3
31	Mesenchymal Stem Cells Form 3D Clusters Following Intraventricular Transplantation. Journal of Molecular Neuroscience, 2018, 65, 60-73.	2.3	17
32	Comparison of <i>in vitro</i> -cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2565-2581.	2.7	29
33	Differential magnesium implant corrosion coat formation and contribution to bone bonding. Journal of Biomedical Materials Research - Part A, 2017, 105, 697-709.	4.0	11
34	Effect of hyperbaric oxygen on BDNF-release and neuroprotection: Investigations with human mesenchymal stem cells and genetically modified NIH3T3 fibroblasts as putative cell therapeutics. PLoS ONE, 2017, 12, e0178182.	2.5	20
35	Expression of CD24 in Human Bone Marrow-Derived Mesenchymal Stromal Cells Is Regulated by TGFβ3 and Induces a Myofibroblast-Like Genotype. Stem Cells International, 2016, 2016, 1-13.	2.5	17
36	Induction of neuronal-like phenotype in human mesenchymal stem cells by overexpression of Neurogenin1 and treatment with neurotrophins. Tissue and Cell, 2016, 48, 524-532.	2.2	10

#	Article	IF	CITATIONS
37	Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 104-115.	5.0	13
38	Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Research and Therapy, 2015, 6, 150.	5.5	33
39	Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system. Brain, Behavior, and Immunity, 2015, 50, 155-165.	4.1	25
40	Drug-Induced Trafficking of P-Glycoprotein in Human Brain Capillary Endothelial Cells as Demonstrated by Exposure to Mitomycin C. PLoS ONE, 2014, 9, e88154.	2.5	34
41	Periostin Secreted by Mesenchymal Stem Cells Supports Tendon Formation in an Ectopic Mouse Model. Stem Cells and Development, 2014, 23, 1844-1857.	2.1	30
42	Analysis of Surface Protein Expression in Human Bone Marrow Stromal Cells: New Aspects of Culture-Induced Changes, Inter-Donor Differences and Intracellular Expression. Stem Cells and Development, 2013, 22, 3226-3235.	2.1	19
43	THOC5, a member of the mRNA export complex, contributes to processing of a subset of wingless/integrated (Wnt) target mRNAs and integrity of the gut epithelial barrier. BMC Cell Biology, 2013, 14, 51.	3.0	25
44	Therapeutic Strategies for Tendon Healing Based on Novel Biomaterials, Factors and Cells. Pathobiology, 2013, 80, 203-210.	3.8	359
45	The Phosphate Source Influences Gene Expression and Quality of Mineralization during In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e65943.	2.5	51
46	Effects of Murine and Human Bone Marrow-Derived Mesenchymal Stem Cells on Cuprizone Induced Demyelination. PLoS ONE, 2013, 8, e69795.	2.5	43
47	5 Mesenchymal stem cells in enthesis formation and repair. , 2013, , 83-100.		0
48	Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells inÂvitro and inÂvivo. Hearing Research, 2012, 289, 86-97.	2.0	47
49	Coating of Titanium Implant Materials with Thin Polymeric Films for Binding the Signaling Protein BMP2. Macromolecular Bioscience, 2011, 11, 234-244.	4.1	21
50	Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomaterialia, 2011, 7, 1772-1779.	8.3	42
51	Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits. Indian Journal of Orthopaedics, 2011, 45, 57-62.	1.1	23
52	Coating of titanium implants with copolymer supports bone regeneration: a comparative in vivo study in rabbits. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 26-33.	0.4	3
53	In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells. Blood, 2010, 116, 3505-3516.	1.4	57

54 Mesenchymal Stem Cell-Dependent Formation of Heterotopic Tendon-Bone Insertions (Osteotendinous) Tj ETQq0 9.9 rgBT /Qverlock 10

Andrea Hoffmann

#	Article	IF	CITATIONS
55	Enhancement of endoprosthesis anchoring using BMP-2. Technology and Health Care, 2010, 18, 217-229.	1.2	12
56	Innovative Strategies for Treatment of Soft Tissue Injuries in Human and Animal Athletes. Medicine and Sport Science, 2009, 54, 150-165.	1.4	9
57	Wnt-ligand-dependent interaction of TAK1 (TGF-Î ² -activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cellular Signalling, 2008, 20, 2134-2144.	3.6	48
58	Fibroblast-Mediated Delivery of GDNF Induces Neuronal-Like Outgrowth in PC12 Cells. Otology and Neurotology, 2008, 29, 475-481.	1.3	14
59	Screening of photochemically grafted polymer films for compatibility with osteogenic precursor cells. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 303-316.	3.5	18
60	The biological effects of cell-delivered brain-derived neurotrophic factor on cultured spiral ganglion cells. NeuroReport, 2007, 18, 1683-1686.	1.2	35
61	Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. International Orthopaedics, 2007, 31, 791-797.	1.9	124
62	Tendon and ligament engineering: from cell biology toin vivoapplication. Regenerative Medicine, 2006, 1, 563-574.	1.7	64
63	Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces. Langmuir, 2006, 22, 8197-8204.	3.5	239
64	Synthesis and Characterization of Biocompatible Polymer Interlayers on Titanium Implant Materials. Biomacromolecules, 2006, 7, 2552-2559.	5.4	33
65	Advanced Molecular Profiling in Vivo Detects Novel Function of Dickkopf-3 in the Regulation of Bone Formation. Journal of Bone and Mineral Research, 2006, 21, 1935-1945.	2.8	32
66	Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. Journal of Clinical Investigation, 2006, 116, 940-952.	8.2	221
67	Transforming Growth Factor-β-activated Kinase-1 (TAK1), a MAP3K, Interacts with Smad Proteins and Interferes with Osteogenesis in Murine Mesenchymal Progenitors. Journal of Biological Chemistry, 2005, 280, 27271-27283.	3.4	70
68	Development of an enzyme-linked immunoreceptor assay (ELIRA) for quantification of the biological activity of recombinant human bone morphogenetic protein-2. Journal of Biotechnology, 2005, 119, 425-435.	3.8	10
69	BMP-MEDIATED SIGNALING PATHWAYS FOR BONE FOMATION ARE DIRECTLY BLOCKED BY INFLAMMATORY SIGNALING CASCADES. Shock, 2004, 21, 6.	2.1	Ο
70	Distinct roles of BMP receptors Type IA and IB in osteoâ€ / chondrogenic differentiation in mesenchymal progenitors (C3H10T1/2). BioFactors, 2004, 20, 71-84.	5.4	25
71	Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. Journal of Biotechnology, 2002, 94, 185-194.	3.8	132
72	The T-box transcription factor <i>Brachyury</i> mediates cartilage development in mesenchymal stem cell line C3H10T1/2. Journal of Cell Science, 2002, 115, 769-781.	2.0	80

ANDREA HOFFMANN

#	Article	IF	CITATIONS
73	The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2. Journal of Cell Science, 2002, 115, 769-81.	2.0	64
74	BMP Signaling Pathways in Cartilage and Bone Formation. Critical Reviews in Eukaryotic Gene Expression, 2001, 11, 24.	0.9	98
75	The Bone Morphogenetic Protein 2 Signaling Mediator Smad1 Participates Predominantly in Osteogenic and not in Chondrogenic Differentiation in Mesenchymal Progenitors C3H10T½. Journal of Bone and Mineral Research, 2000, 15, 1889-1899.	2.8	49
76	ACE-gene polymorphism is associated with the development of allograft vascular disease in heart transplant recipients. Journal of Heart and Lung Transplantation, 2000, 19, 1175-1182.	0.6	28
77	CARDIAC ALLOGRAFT VASCULAR DISEASE AFTER ORTHOTOPIC HEART TRANSPLANTATION. Transplantation, 2000, 69, 442-446.	1.0	14
78	Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T½). Developmental Dynamics, 1998, 213, 398-411.	1.8	68
79	Hypoglycosylation of a brain glycoprotein (β-trace protein) in CDG syndromes due to phosphomannomutase deficiency and N-acetylglucosaminyl-transferase II deficiency. Glycobiology, 1997, 7, 1077-1084.	2.5	41
80	Molecular characterization of β-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology, 1997, 7, 499-506.	2.5	131
81	Characterization of human β-trace protein from natural body fluids, from patients and from recombinant sources. Prostaglandins, 1996, 51, 284.	1.2	2
82	Developmental expression of murine β-trace in embryos and adult animals suggests a function in maturation and maintenance of blood-tissue barriers. , 1996, 207, 332-343.		53
83	Constitutive secretion of β-trace protein by cultivated porcine choroid plexus epithelial cells: Elucidation of its complete amino acid and cDNA sequences. Journal of Cellular Physiology, 1996, 169, 235-241.	4.1	18
84	"Brain-Tissue-Specific―Versus "Serum-Specific―Posttranslational Modification of Human Cerebrospinal Fluid Polypeptides with N-Linked Carbohydrates. Advances in Behavioral Biology, 1996, , 103-107.	0.2	1
85	â€~Brain-type'N-glycosylation of asialo-transferrin from human cerebrospinal fluid. FEBS Letters, 1995, 359, 164-168.	2.8	90
86	Carbohydrate Structures of βâ€Trace Protein from Human Cerebrospinal Fluid: Evidence for "Brainâ€Typeâ€∢i>Nâ€Glycosylation. Journal of Neurochemistry, 1994, 63, 2185-2196.	3.9	77
87	Purification and Chemical Characterization of βâ€Trace Protein from Human Cerebrospinal Fluid: Its Identification as Prostaglandin D Synthase. Journal of Neurochemistry, 1993, 61, 451-456.	3.9	168