Yan-Qing Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9606637/publications.pdf

Version: 2024-02-01

40 papers

3,689 citations

28 h-index 223800 46 g-index

48 all docs 48 docs citations

times ranked

48

7455 citing authors

#	Article	IF	CITATIONS
1	Organ distribution of severe acute respiratory syndrome(SARS) associated coronavirus(SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. Journal of Pathology, 2004, 203, 622-630.	4.5	894
2	Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clinical Infectious Diseases, 2005, 41, 1089-1096.	5.8	438
3	Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biology and Therapy, 2010, 9, 295-302.	3.4	191
4	Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death and Differentiation, 2019, 26, 2447-2463.	11.2	182
5	Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a ready-for-discharge patient. Cell Research, 2020, 30, 541-543.	12.0	176
6	LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell, 2019, 178, 1478-1492.e20.	28.9	122
7	Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Research, 2011, 21, 609-626.	12.0	121
8	Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1. Gut, 2010, 59, 1226-1235.	12.1	117
9	miR-133a represses tumour growth and metastasis in colorectal cancer by targeting LIM and SH3 protein 1 and inhibiting the MAPK pathway. European Journal of Cancer, 2013, 49, 3924-3935.	2.8	101
10	LIM and SH3 Protein 1 Induces TGFβ-Mediated Epithelial–Mesenchymal Transition in Human Colorectal Cancer by Regulating S100A4 Expression. Clinical Cancer Research, 2014, 20, 5835-5847.	7.0	101
11	A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Research, 2021, 31, 836-846.	12.0	93
12	Nuclear lncRNA HOXD-AS1 suppresses colorectal carcinoma growth and metastasis via inhibiting HOXD3-induced integrin \hat{I}^2 3 transcriptional activating and MAPK/AKT signalling. Molecular Cancer, 2019, 18, 31.	19.2	90
13	Elevated MicroRNA-31 Expression Regulates Colorectal Cancer Progression by Repressing Its Target Gene SATB2. PLoS ONE, 2013, 8, e85353.	2.5	85
14	<i>SATB2-AS1</i> Suppresses Colorectal Carcinoma Aggressiveness by Inhibiting SATB2-Dependent Snail Transcription and Epithelial–Mesenchymal Transition. Cancer Research, 2019, 79, 3542-3556.	0.9	75
15	FOXC2 promotes colorectal cancer proliferation through inhibition of FOXO3a and activation of MAPK and AKT signaling pathways. Cancer Letters, 2014, 353, 87-94.	7.2	71
16	LIM kinase 1 interacts with myosin-9 and alpha-actinin-4 and promotes colorectal cancer progression. British Journal of Cancer, 2017, 117, 563-571.	6.4	57
17	Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein and Cell, 2021, 12, 240-260.	11.0	57
18	LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGF \hat{l}^2 /Smad signaling. Scientific Reports, 2016, 6, 26112.	3.3	56

#	Article	IF	Citations
19	miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1. Cancer Cell International, 2017, 17, 91.	4.1	45
20	MIF, secreted by human hepatic sinusoidal endothelial cells, promotes chemotaxis and outgrowth of colorectal cancer in liver prometastasis. Oncotarget, 2015, 6, 22410-22423.	1.8	42
21	HGF/R-spondin1 rescues liver dysfunction through the induction of Lgr5+ liver stem cells. Nature Communications, 2017, 8, 1175.	12.8	40
22	COPS5 and LASP1 synergistically interact to downregulate $14\hat{a} \in 3\hat{a} \in 3\hat{f}$ expression and promote colorectal cancer progression via activating PI3K/AKT pathway. International Journal of Cancer, 2018, 142, 1853-1864.	5.1	40
23	MiR-384 inhibits human colorectal cancer metastasis by targeting KRAS and CDC42. Oncotarget, 2016, 7, 84826-84838.	1.8	40
24	Hybrid Al-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nature Communications, 2021, 12, 3541.	12.8	36
25	TLE4 promotes colorectal cancer progression through activation of JNK/c-Jun signaling pathway. Oncotarget, 2016, 7, 2878-2888.	1.8	35
26	MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death and Differentiation, 2021, 28, 3251-3269.	11.2	35
27	Hypermethylation of DMTN promotes the metastasis of colorectal cancer cells by regulating the actin cytoskeleton through Rac1 signaling activation. Journal of Experimental and Clinical Cancer Research, 2018, 37, 299.	8.6	32
28	Calcium Channel Blocker Nifedipine Suppresses Colorectal Cancer Progression and Immune Escape by Preventing NFAT2 Nuclear Translocation. Cell Reports, 2020, 33, 108327.	6.4	32
29	Downregulation of <i>SAFB</i> Sustains the NF- ΰ B Pathway by Targeting <i>TAK1</i> during the Progression of Colorectal Cancer. Clinical Cancer Research, 2017, 23, 7108-7118.	7.0	31
30	miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget, 2016, 7, 61312-61324.	1.8	31
31	Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/ \hat{l}^2 -catenin pathway. Oncotarget, 2015, 6, 3123-3135.	1.8	30
32	The tumor-suppressor gene LZTS1 suppresses colorectal cancer proliferation through inhibition of the AKT–mTOR signaling pathway. Cancer Letters, 2015, 360, 68-75.	7.2	26
33	Loss of the 14-3-3Ïf is essential for LASP1-mediated colorectal cancer progression via activating PI3K/AKT signaling pathway. Scientific Reports, 2016, 6, 25631.	3.3	26
34	CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression. Oncogenesis, 2021, 10, 84.	4.9	16
35	UBN2 promotes tumor progression via the Ras/MAPK pathway and predicts poor prognosis in colorectal cancer. Cancer Cell International, 2019, 19, 126.	4.1	13
36	Prohibitin, relocated to the front ends, can control the migration directionality of colorectal cancer cells. Oncotarget, 2017, 8, 76340-76356.	1.8	8

#	Article	IF	CITATIONS
37	Cdc42 subcellular relocation in response to VEGF/NRP1 engagement is associated with the poor prognosis of colorectal cancer. Cell Death and Disease, 2020, 11, 171.	6.3	8
38	Overexpression of GSTP1 promotes colorectal cancer cell proliferation, invasion and metastasis by upregulating STAT3. Advances in Clinical and Experimental Medicine, 2022, 31, 139-149.	1.4	8
39	Engagement of Robo1 by Slit2 induces formation of a trimeric complex consisting of Src-Robo1-E-cadherin for E-cadherin phosphorylation and epithelial-mesenchymal transition. Biochemical and Biophysical Research Communications, 2020, 522, 757-762.	2.1	4
40	Familial adenomatous polyposis. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 1999, 11, 55-55.	2.2	1