
David L Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9606570/publications.pdf Version: 2024-02-01

Πλυίο Ι. Μιιρρλγ

#	Article	IF	CITATIONS
1	Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology, 2015, 275, 772-782.	7.3	1,148
2	Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities. Radiology, 2017, 285, 546-554.	7.3	253
3	Comparison of Gadolinium Concentrations within Multiple Rat Organs after Intravenous Administration of Linear versus Macrocyclic Gadolinium Chelates. Radiology, 2017, 285, 536-545.	7.3	155
4	Comprehensive Assessment of M-Proteins Using Nanobody Enrichment Coupled to MALDI-TOF Mass Spectrometry. Clinical Chemistry, 2016, 62, 1334-1344.	3.2	122
5	Tumor necrosis factor inhibitors: clinical utility in autoimmune diseases. Translational Research, 2015, 165, 270-282.	5.0	120
6	Using Mass Spectrometry to Monitor Monoclonal Immunoglobulins in Patients with a Monoclonal Gammopathy. Journal of Proteome Research, 2014, 13, 1419-1427.	3.7	116
7	The utility of MASSâ€FIX to detect and monitor monoclonal proteins in the clinic. American Journal of Hematology, 2017, 92, 772-779.	4.1	93
8	Detecting monoclonal immunoglobulins in human serum using mass spectrometry. Methods, 2015, 81, 56-65.	3.8	77
9	Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer Journal, 2021, 11, 24.	6.2	77
10	Intracranial Gadolinium Deposition Following Gadodiamide-Enhanced Magnetic Resonance Imaging in Pediatric Patients. JAMA Pediatrics, 2017, 171, 705.	6.2	76
11	Diagnosis of complement alternative pathway disorders. Kidney International, 2016, 89, 278-288.	5.2	74
12	Quantitation of Serum Monoclonal Proteins: Relationship between Agarose Gel Electrophoresis and Immunonephelometry. Clinical Chemistry, 2009, 55, 1523-1529.	3.2	62
13	Monitoring IgA Multiple Myeloma: Immunoglobulin Heavy/Light Chain Assays. Clinical Chemistry, 2015, 61, 360-367.	3.2	57
14	Clonotypic Light Chain Peptides Identified for Monitoring Minimal Residual Disease in Multiple Myeloma without Bone Marrow Aspiration. Clinical Chemistry, 2016, 62, 243-251.	3.2	57
15	Accumulation of Gadolinium in Human Cerebrospinal Fluid after Gadobutrol-enhanced MR Imaging: A Prospective Observational Cohort Study. Radiology, 2018, 288, 416-423.	7.3	57
16	Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement. Blood Cancer Journal, 2019, 9, 102.	6.2	57
17	Monitoring M-Proteins in Patients with Multiple Myeloma Using Heavy-Chain Variable Region Clonotypic Peptides and LC–MS/MS. Journal of Proteome Research, 2014, 13, 1905-1910.	3.7	56
18	Thrombotic Microangiopathy Care Pathway: A Consensus Statement for the Mayo Clinic Complement Alternative Pathway-Thrombotic Microangiopathy (CAP-TMA) Disease-Oriented Group. Mayo Clinic Proceedings, 2016, 91, 1189-1211.	3.0	55

#	Article	IF	CITATIONS
19	Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients. Leukemia, 2019, 33, 254-257.	7.2	53
20	Relationship between monoclonal gammopathy and cardiac amyloid type. Cardiovascular Pathology, 2013, 22, 189-194.	1.6	52
21	Quantitation of infliximab using clonotypic peptides and selective reaction monitoring by LC–MS/MS. International Immunopharmacology, 2015, 28, 513-520.	3.8	52
22	Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS. Journal of the American Society for Mass Spectrometry, 2017, 28, 827-838.	2.8	49
23	Quantification of Serum IgG Subclasses by Use of Subclass-Specific Tryptic Peptides and Liquid Chromatography–Tandem Mass Spectrometry. Clinical Chemistry, 2014, 60, 1080-1088.	3.2	47
24	CSF free light chain identification of demyelinating disease: comparison with oligoclonal banding and other CSF indexes. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1071-1080.	2.3	45
25	Screening Method for M-Proteins in Serum Using Nanobody Enrichment Coupled to MALDI-TOF Mass Spectrometry. Clinical Chemistry, 2016, 62, 1345-1352.	3.2	44
26	Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clinical Biochemistry, 2018, 51, 38-47.	1.9	43
27	N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia, 2020, 34, 2749-2753.	7.2	43
28	A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood, 2018, 132, 670-672.	1.4	42
29	Laboratory Persistence and Clinical Progression of Small Monoclonal Abnormalities. American Journal of Clinical Pathology, 2012, 138, 609-613.	0.7	40
30	lgM AL amyloidosis: delineating disease biology and outcomes with clinical, genomic and bone marrow morphological features. Leukemia, 2020, 34, 1373-1382.	7.2	40
31	Phenotyping Polyclonal Kappa and Lambda Light Chain Molecular Mass Distributions in Patient Serum Using Mass Spectrometry. Journal of Proteome Research, 2014, 13, 5198-5205.	3.7	37
32	Monoclonal antibody therapeutics as potential interferences on protein electrophoresis and immunofixation. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1085-93.	2.3	37
33	MASSâ€FIX may allow identification of patients at risk for light chain amyloidosis before the onset of symptoms. American Journal of Hematology, 2018, 93, E368-E370.	4.1	34
34	Treatment of AL Amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement 2020 Update. Mayo Clinic Proceedings, 2021, 96, 1546-1577.	3.0	32
35	Monoclonal and oligoclonal anti-platelet factor 4 antibodies mediate VITT. Blood, 2022, 140, 73-77.	1.4	32
36	Monitoring free light chains in serum using mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1073-83.	2.3	31

#	Article	IF	CITATIONS
37	Direct Detection of Monoclonal Free Light Chains in Serum by Use of Immunoenrichment-Coupled MALDI-TOF Mass Spectrometry. Clinical Chemistry, 2019, 65, 1015-1022.	3.2	31
38	Identification of Friend or Foe: The Laboratory Challenge of Differentiating M-Proteins from Monoclonal Antibody Therapies. journal of applied laboratory medicine, The, 2017, 1, 421-431.	1.3	30
39	Screening and Diagnosis of Monoclonal Gammopathies: An International Survey of Laboratory Practice. Archives of Pathology and Laboratory Medicine, 2018, 142, 507-515.	2.5	29
40	Automation and validation of a MALDI-TOF MS (Mass-Fix) replacement of immunofixation electrophoresis in the clinical lab. Clinical Chemistry and Laboratory Medicine, 2021, 59, 155-163.	2.3	28
41	Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis. Blood Cancer Journal, 2020, 10, 20.	6.2	26
42	MASS-FIX for the detection of monoclonal proteins and light chain N-glycosylation in routine clinical practice: a cross-sectional study of 6315 patients. Blood Cancer Journal, 2021, 11, 50.	6.2	25
43	Using Mass Spectrometry to Quantify Rituximab and Perform Individualized Immunoglobulin Phenotyping in ANCA-Associated Vasculitis. Analytical Chemistry, 2016, 88, 6317-6325.	6.5	24
44	Giant cell interstitial pneumonia in patients without hard metal exposure: analysis of 3 cases and review of the literature. Human Pathology, 2016, 50, 176-182.	2.0	24
45	Predictors of symptomatic hyperviscosity in Waldenström macroglobulinemia. American Journal of Hematology, 2018, 93, 1384-1393.	4.1	24
46	Detecting monoclonal light chains in urine: micro <scp>LC</scp> â€ <scp>ESI</scp> â€Qâ€ <scp>TOF</scp> mass spectrometry compared to immunofixation electrophoresis. British Journal of Haematology, 2014, 167, 437-438.	2.5	22
47	Using matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry to detect monoclonal immunoglobulin light chains in serum and urine. Rapid Communications in Mass Spectrometry, 2015, 29, 2057-2060.	1.5	22
48	The impact of eculizumab on routine complement assays. Journal of Immunological Methods, 2018, 460, 63-71.	1.4	22
49	Laboratory Detection and Initial Diagnosis of Monoclonal Gammopathies. Archives of Pathology and Laboratory Medicine, 2022, 146, 575-590.	2.5	22
50	Myocardial Cobalt Levels Are Elevated in the Setting of Total Hip Arthroplasty. Journal of Bone and Joint Surgery - Series A, 2017, 99, e118.	3.0	21
51	Classification of Plasma Cell Disorders by 21 Tesla Fourier Transform Ion Cyclotron Resonance Top-Down and Middle-Down MS/MS Analysis of Monoclonal Immunoglobulin Light Chains in Human Serum. Analytical Chemistry, 2019, 91, 3263-3269.	6.5	21
52	Implications of detecting serum monoclonal protein by MASSâ€fix following stem cell transplantation in multiple myeloma. British Journal of Haematology, 2021, 193, 380-385.	2.5	21
53	Establishing human heart chromium, cobalt and vanadium concentrations by inductively coupled plasma mass spectrometry. Journal of Trace Elements in Medicine and Biology, 2017, 41, 60-65.	3.0	20
54	Pharmacokinetics of rituximab and clinical outcomes in patients with anti-neutrophil cytoplasmic antibody associated vasculitis. Rheumatology, 2018, 57, 639-650.	1.9	20

#	Article	IF	CITATIONS
55	Mass-Fix better predicts for PFS and OS than standard methods among multiple myeloma patients participating on the STAMINA trial (BMT CTN 0702 /07LT). Blood Cancer Journal, 2022, 12, 27.	6.2	19
56	Diagnostic Utility of Complement Serology for Atypical Hemolytic Uremic Syndrome. Mayo Clinic Proceedings, 2018, 93, 1351-1362.	3.0	17
57	CSF Kappa Free Light Chains: Cutoff Validation for Diagnosing Multiple Sclerosis. Mayo Clinic Proceedings, 2022, 97, 738-751.	3.0	17
58	Characterization of immunoglobulin by mass spectrometry with applications for the clinical laboratory. Critical Reviews in Clinical Laboratory Sciences, 2013, 50, 91-102.	6.1	16
59	SERPINA1 Full-Gene Sequencing Identifies Rare Mutations Not Detected in Targeted Mutation Analysis. Journal of Molecular Diagnostics, 2015, 17, 689-694.	2.8	16
60	Assessment of renal response with urinary exosomes in patients with AL amyloidosis: A proof of concept. American Journal of Hematology, 2017, 92, 536-541.	4.1	16
61	Detection of Plasma Cell Disorders by Mass Spectrometry: A Comprehensive Review of 19,523 Cases. Mayo Clinic Proceedings, 2022, 97, 294-307.	3.0	16
62	Revisiting complete response in light chain amyloidosis. Leukemia, 2020, 34, 1472-1475.	7.2	15
63	Free Light Chain Assay Drift: Potential for Misdiagnosis?. journal of applied laboratory medicine, The, 2020, 5, 1411-1413.	1.3	15
64	Glycosylation of immunoglobulin light chains is highly prevalent in cold agglutinin disease. American Journal of Hematology, 2020, 95, E222-E225.	4.1	15
65	A study from The Mayo Clinic evaluated long-term outcomes of kidney transplantation in patients with immunoglobulin light chain amyloidosis. Kidney International, 2021, 99, 707-715.	5.2	13
66	Discontinuation of dialysis with eculizumab therapy in a pediatric patient with dense deposit disease. Pediatric Nephrology, 2016, 31, 683-687.	1.7	12
67	Cryofibrinogen-Associated Glomerulonephritis. American Journal of Kidney Diseases, 2017, 69, 302-308.	1.9	12
68	Polyclonal serum free light chain elevation is associated with increased risk of monoclonal gammopathies. Blood Cancer Journal, 2019, 9, 49.	6.2	11
69	Clinical Mass Spectrometry Approaches to Myeloma and Amyloidosis. Clinics in Laboratory Medicine, 2021, 41, 203-219.	1.4	11
70	Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype. Journal of Proteome Research, 2015, 14, 5283-5290.	3.7	9
71	Association of elevated serumfree light chains with chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Blood Cancer Journal, 2019, 9, 59.	6.2	9
72	Risk of MGUS in relatives of multiple myeloma cases by clinical and tumor characteristics. Leukemia, 2019, 33, 499-507.	7.2	9

#	Article	IF	CITATIONS
73	Significance of peripheral eosinophilia for diagnosis of IgG4-related disease in subjects with elevated serum IgG4 levels. Pancreatology, 2020, 20, 74-78.	1.1	9
74	Monitoring Ravulizumab effect on complement assays. Journal of Immunological Methods, 2021, 490, 112944.	1.4	9
75	Clearing drug interferences in myeloma treatment using mass spectrometry. Clinical Biochemistry, 2021, 92, 61-66.	1.9	9
76	Kidney Transplantation in Patients With Monoclonal Gammopathy of Renal Significance (MGRS)–Associated Lesions: A Case Series. American Journal of Kidney Diseases, 2022, 79, 202-216.	1.9	9
77	Disease monitoring with quantitative serum IgA levels provides a more reliable response assessment in multiple myeloma patients. Leukemia, 2021, 35, 1428-1437.	7.2	8
78	Bringing mass spectrometry into the care of patients with multiple myeloma. International Journal of Hematology, 2022, 115, 790-798.	1.6	8
79	Peripheral neuropathy associated with silver toxicity. Neurology, 2019, 92, 481-483.	1.1	7
80	Systemic AL amyloidosis with an undetectable plasma cell dyscrasia: A zebra without stripes. American Journal of Hematology, 2020, 95, E45-E48.	4.1	7
81	IGVL gene region usage correlates with distinct clinical presentation in IgM vs non-IgM light chain amyloidosis. Blood Advances, 2021, 5, 2101-2105.	5.2	7
82	Standardized reporting of monoclonal immunoglobulin–associated renal diseases: recommendations from a Mayo Clinic/Renal Pathology Society Working Group. Kidney International, 2020, 98, 310-313.	5.2	7
83	Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down <i>de novo</i> sequencing. Clinical Chemistry and Laboratory Medicine, 2021, 59, 653-661.	2.3	7
84	Tracking daratumumab clearance using mass spectrometry: implications on M protein monitoring and reusing daratumumab. Leukemia, 2022, 36, 1426-1428.	7.2	7
85	Monitoring oligoclonal immunoglobulins in cerebral spinal fluid using microLC-ESI-Q-TOF mass spectrometry. Journal of Neuroimmunology, 2015, 288, 123-126.	2.3	6
86	The characteristics of seronegative and seropositive non-hepatitis-associated cryoglobulinemic glomerulonephritis. Kidney International, 2022, 102, 382-394.	5.2	6
87	MALDI-TOF mass spectrometry can distinguish immunofixation bands of the same isotype as monoclonal or biclonal proteins. Clinical Biochemistry, 2021, 97, 67-73.	1.9	4
88	In from the cold: Mâ€protein light chain glycosylation is positively associated with cold agglutinin titer levels. Transfusion, 2021, 61, 1302-1311.	1.6	4
89	Association of \hat{I}_{\pm} 1 Antitrypsin Phenotype and Development of Advanced Liver Disease and Pulmonary Complications Before and After Liver Transplantation. Transplantation, 2021, 105, 1576-1584.	1.0	4
90	Restricted IgC-Kappa and Free Alpha-Heavy-Chain Bands in an Asymptomatic 62-Year-Old Man. Clinical Chemistry, 2018, 64, 265-268.	3.2	3

#	Article	IF	CITATIONS
91	Utilization of LC-MS to Determine Monoclonal Gammopathy-Associated Granulocyte Macrophage Colony Stimulating Factor Antibody and Novel Treatment of Pulmonary Alveolar Proteinosis. journal of applied laboratory medicine, The, 2020, 5, 394-400.	1.3	3
92	Sequential Comparison of Conventional Serum Immunofixation (IFE) to Mass Spectrometry-Based Assessment (MASS FIX) in Patients with Multiple Myeloma (MM). Blood, 2020, 136, 12-13.	1.4	3
93	Novel Genetic Variants in Complement-Mediated Thrombotic Microangiopath. Blood, 2015, 126, 1050-1050.	1.4	3
94	Evolution of Myeloma Testing in Clinical Chemistry with Mass Spectrometry. journal of applied laboratory medicine, The, 2019, 4, 474-476.	1.3	2
95	Sialic acid–bearing paraproteins are implicated in heparin-like coagulopathy in patients with myeloma. Blood, 2020, 136, 1988-1992.	1.4	2
96	A rare case of selective Iglº chain deficiency: Biologic and clinical implications. Journal of Allergy and Clinical Immunology, 2020, 146, 1208-1210.e6.	2.9	2
97	Prognostic Implications of Serum Monoclonal Protein Positivity By Mass-Fix in Bone Marrow Minimal Residual Disease Negative (MRD-) Patients with Multiple Myeloma. Blood, 2019, 134, 4386-4386.	1.4	2
98	MASS-FIX for the Diagnosis of Plasma Cell Disorders: A Single Institution Experience of 4118 Patients. Blood, 2020, 136, 48-49.	1.4	2
99	Monoclonal and Oligoclonal Anti-PF4 Antibodies Mediate VITT. Blood, 2021, 138, 3220-3220.	1.4	2
100	Prevalence of heavy chain MGUS by race and family history risk groups using a high-sensitivity screening method. Blood Advances, 2022, 6, 3746-3750.	5.2	2
101	High sensitivity Mâ€protein detection in a case of lightâ€chain cardiac amyloidosis without evidence of plasma cell dyscrasia. American Journal of Hematology, 2019, 94, 619-621.	4.1	1
102	Belantamab mafodotin detection by MASS-FIX and immunofixation. Clinical Chemistry and Laboratory Medicine, 2021, 59, e430-e433.	2.3	1
103	Glycosylation of Immunoglobulin Light Chains Is Highly Prevalent in Cold Agglutinin Disease. Blood, 2019, 134, 3510-3510.	1.4	1
104	Comparison of MGUS Prevalence By Race and Family History Risk Groups Using a High Sensitivity Screening Method (MASS-FIX). Blood, 2020, 136, 40-41.	1.4	1
105	Commentary. Clinical Chemistry, 2019, 65, 837-838.	3.2	0
106	Proteomic Analysis of Immunoglobulin Light Chains (LC) In AL Amyloidosis Shows That the Sequence of Clonal LC Secreted by the Neoplastic Plasma Cells Is Identical to the LC Deposited In the Amyloid Plaques. Blood, 2010, 116, 1909-1909.	1.4	0
107	Monitoring Minimum Residual Disease In Multiple Myeloma Patients By LC-MS/MS. Blood, 2013, 122, 3152-3152.	1.4	0
108	A Rapid MALDI-TOF Method for Isotyping and Quantitating M-Proteins in a Single Assay: Longitudinal Comparison to Serum Protein Electrophoresis and Hevylite for Monitoring Patients with Monoclonal Gammopathies. Blood, 2015, 126, 1780-1780.	1.4	0

#	Article	IF	CITATIONS
109	Mass Spectrometry to Measure Response in Immunoglobulin Light Chain Amyloidosis (AL). Blood, 2018, 132, 4502-4502.	1.4	0
110	Immunoglobulin Variable Gene Region (IGVL) Usage Correlates with Distinct Clinical Presentation in IgM Versus Non-IgM Light Chain Amyloidosis. Blood, 2019, 134, 1770-1770.	1.4	0
111	Tracking Daratumumab Clearance Using Mass Spectrometric Approaches: Implications on M Protein Monitoring and Reusing Daratumumab. Blood, 2021, 138, 2707-2707.	1.4	0
112	Relationship and Susceptibility to Serious Infections Among Monoclonal B-Cell Lymphocytosis (MBL), Monoclonal Gammopathy of Undetermined Significance (MGUS), and Clonal Hematopoiesis (CH) Premalignant Conditions. Blood, 2021, 138, 3739-3739.	1.4	0
113	The Prognostic Utility of Serial MASS-FIX in Multiple Myeloma. Blood, 2021, 138, 1619-1619.	1.4	0
114	Detection of Monoclonal Immunoglobulin By Mass Spectrometry in Patients Evaluated for Thrombotic Microangiopathy (TMA). Blood, 2020, 136, 17-17.	1.4	0
115	A Cross Sectional Evaluation of Light Chain N-Glycosylation By MASS-FIX in Plasma Cell Disorders. Blood, 2020, 136, 44-45.	1.4	0