
Hiroshi Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9605780/publications.pdf Version: 2024-02-01

Нирозни Улилсисни

#	Article	IF	CITATIONS
1	Wip1 Phosphatase Modulates ATM-Dependent Signaling Pathways. Molecular Cell, 2006, 23, 757-764.	9.7	323
2	Alternative p38 activation pathway mediated by T cell receptor–proximal tyrosine kinases. Nature Immunology, 2005, 6, 390-395.	14.5	263
3	Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies. Biomolecules, 2014, 4, 235-251.	4.0	201
4	Structure of the Tfb1/p53 Complex: Insights into the Interaction between the p62/Tfb1 Subunit of TFIIH and the Activation Domain of p53. Molecular Cell, 2006, 22, 731-740.	9.7	190
5	Enzyme-Immobilized Microfluidic Process Reactors. Molecules, 2011, 16, 6041-6059.	3.8	137
6	Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. Journal of Experimental Medicine, 2006, 203, 2793-2799.	8.5	121
7	High-resolution X-ray analysis reveals binding of arginine to aromatic residues of lysozyme surface: implication of suppression of protein aggregation by arginine. Protein Engineering, Design and Selection, 2011, 24, 269-274.	2.1	75
8	Techniques for Preparation of Cross-Linked Enzyme Aggregates and Their Applications in Bioconversions. Catalysts, 2018, 8, 174.	3.5	73
9	Two Distinct Motifs within the p53 Transactivation Domain Bind to the Taz2 Domain of p300 and Are Differentially Affected by Phosphorylation. Biochemistry, 2009, 48, 1244-1255.	2.5	63
10	The Wip1 Phosphatase PPM1D Dephosphorylates SQ/TQ Motifs in Checkpoint Substrates Phosphorylated by PI3K-like Kinases. Biochemistry, 2007, 46, 12594-12603.	2.5	60
11	Substrate Specificity of the Human Protein Phosphatase 2Cl̃, Wip1. Biochemistry, 2005, 44, 5285-5294.	2.5	59
12	Development of a Substrate-Based Cyclic Phosphopeptide Inhibitor of Protein Phosphatase 2Cδ, Wip1â€. Biochemistry, 2006, 45, 13193-13202.	2.5	55
13	Enzymatic Processing in Microfluidic Reactors. Biotechnology and Genetic Engineering Reviews, 2008, 25, 405-428.	6.2	54
14	T Cell Receptor-mediated Activation of p38α by Mono-phosphorylation of the Activation Loop Results in Altered Substrate Specificity. Journal of Biological Chemistry, 2009, 284, 15469-15474.	3.4	46
15	Poly-lysine supported cross-linked enzyme aggregates with efficient enzymatic activity and high operational stability. Catalysis Science and Technology, 2011, 1, 1256.	4.1	45
16	Enzymeâ€immobilized reactors for rapid and efficient sample preparation in <scp>MS</scp> â€based proteomic studies. Proteomics, 2013, 13, 457-466.	2.2	44
17	Microfluidic Approaches for Protein Crystal Structure Analysis. Analytical Sciences, 2016, 32, 3-9.	1.6	38
18	Rapid and efficient proteolysis for proteomic analysis by proteaseâ€ i mmobilized microreactor. Electrophoresis, 2009, 30, 3257-3264.	2.4	37

Hiroshi Yamaguchi

#	Article	IF	CITATIONS
19	Multidigestion in continuous flow tandem protease-immobilized microreactors for proteomic analysis. Analytical Biochemistry, 2010, 407, 12-18.	2.4	28
20	Controlling Protein Crystal Nucleation by Dropletâ€Based Microfluidics. Chemistry - A European Journal, 2014, 20, 1049-1056.	3.3	28
21	X-ray Diffraction of Protein Crystal Grown in a Nano-liter Scale Droplet in a Microchannel and Evaluation of Its Applicability. Analytical Sciences, 2012, 28, 65-68.	1.6	24
22	A method for generating single crystals that rely on internal fluid dynamics of microdroplets. Chemical Communications, 2012, 48, 5037.	4.1	21
23	Controlling one protein crystal growth by droplet-based microfluidic system. Journal of Biochemistry, 2013, 153, 339-346.	1.7	20
24	Refolding of difficult-to-fold proteins by a gradual decrease of denaturant using microfluidic chips. Journal of Biochemistry, 2010, 147, 895-903.	1.7	19
25	Three-dimensional Raman spectroscopic imaging of protein crystals deposited on a nanodroplet. Analyst, The, 2012, 137, 5730.	3.5	16
26	Application of enzyme-immobilization technique for microflow reactor. Journal of Flow Chemistry, 2016, 6, 13-17.	1.9	16
27	A Small Molecular Scaffold for Selective Inhibition of Wip1 Phosphatase. ChemMedChem, 2008, 3, 230-232.	3.2	15
28	Analysis of Kinetic Behavior of Protein Crystallization in Nanodroplets. Chemistry Letters, 2011, 40, 825-827.	1.3	12
29	Laccase aggregates <i>via</i> poly-lysine-supported immobilization onto PEGA resin, with efficient activity and high operational stability and can be used to degrade endocrine-disrupting chemicals. Catalysis Science and Technology, 2021, 11, 934-942.	4.1	12
30	Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies. Bioengineered, 2015, 6, 1-4.	3.2	10
31	Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable proteaseâ€immobilized microreactors. Proteomics, 2010, 10, 2942-2949.	2.2	8
32	Limited Proteolysis in Proteomics Using Protease-Immobilized Microreactors. Methods in Molecular Biology, 2012, 815, 187-198.	0.9	3