Madan K Kharel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9605454/publications.pdf

Version: 2024-02-01

331670 276875 1,755 46 21 41 h-index citations g-index papers 49 49 49 2013 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. Journal of Applied Microbiology, 2022, 132, 59-77.	3.1	17
2	Method validation of gamma-Hydroxybutyric acid detection upon Herpes Simplex Virus-Type 1 infection using LC-MRM-MS with 3-nitrophenylhydrazine derivatization. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114547.	2.8	1
3	Optimization of the catalytic activity of manganese dioxide (MnO2) nanoparticles for degradation of environmental pollutants. Research on Chemical Intermediates, 2021, 47, 3673-3690.	2.7	5
4	Drugs for Gram-Negative Bugs From 2010–2019: A Decade in Review. Open Forum Infectious Diseases, 2020, 7, ofaa276.	0.9	11
5	Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated <i>Streptomyces</i> . Journal of Natural Products, 2019, 82, 3469-3476.	3.0	12
6	Landomycin biosynthesis and its regulation in Streptomyces. Applied Microbiology and Biotechnology, 2019, 103, 1659-1665.	3.6	15
7	Recent Developments in the Quest for Novel Microbial Natural Products. Studies in Natural Products Chemistry, 2018, 59, 109-152.	1.8	3
8	Mccrearamycins A–D, Geldanamycinâ€Derived Cyclopentenone Macrolactams from an Eastern Kentucky Abandoned Coal Mine Microbe. Angewandte Chemie - International Edition, 2017, 56, 2994-2998.	13.8	31
9	Mccrearamycins A–D, Geldanamycinâ€Derived Cyclopentenone Macrolactams from an Eastern Kentucky Abandoned Coal Mine Microbe. Angewandte Chemie, 2017, 129, 3040-3044.	2.0	4
10	Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate <i>Streptomyces</i> sp. RM-14-6. Journal of Natural Products, 2017, 80, 2-11.	3.0	45
11	Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells. PLoS ONE, 2016, 11, e0161119.	2.5	5
12	Drugs Used in Tuberculosis and Leprosy. Side Effects of Drugs Annual, 2016, 38, 283-293.	0.6	4
13	Structural dynamics of a methionine \hat{I}^3 -lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. Structural Dynamics, 2016, 3, 034702.	2.3	4
14	Lethal drugs in capital punishment in USA: History, present, and future perspectives. Research in Social and Administrative Pharmacy, 2016, 12, 1026-1034.	3.0	7
15	Structural characterization of AtmS13, a putative sugar aminotransferase involved in indolocarbazole AT2433 aminopentose biosynthesis. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1547-1554.	2.6	10
16	Structural Characterization of CalS8, a TDP- \hat{l}_{\pm} -d-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis. Journal of Biological Chemistry, 2015, 290, 26249-26258.	3.4	5
17	A comprehensive review of glycosylated bacterial natural products. Chemical Society Reviews, 2015, 44, 7591-7697.	38.1	347
18	Drugs Used in Tuberculosis and Leprosy. Side Effects of Drugs Annual, 2015, 37, 349-365.	0.6	3

#	Article	IF	CITATIONS
19	Cytotoxic Indolocarbazoles from <i>Actinomadura melliaura</i> ATCC 39691. Journal of Natural Products, 2015, 78, 1723-1729.	3.0	37
20	Terfestatins B and C, New <i>p</i> -Terphenyl Glycosides Produced by <i>Streptomyces</i> sp. RM-5–8. Organic Letters, 2015, 17, 2796-2799.	4.6	42
21	The native production of the sesquiterpene isopterocarpolone by <i>Streptomyces</i> sp. RM-14-6. Natural Product Research, 2014, 28, 337-339.	1.8	17
22	Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. Journal of Antibiotics, 2014, 67, 223-230.	2.0	33
23	Ruthmycin, a New Tetracyclic Polyketide from Streptomyces sp. RM-4-15. Organic Letters, 2014, 16, 456-459.	4.6	23
24	Mullinamides A and B, new cyclopeptides produced by the Ruth Mullins coal mine fire isolate Streptomyces sp. RM-27-46. Journal of Antibiotics, 2014, 67, 571-575.	2.0	31
25	Structure-Guided Functional Characterization of Enediyne Self-Sacrifice Resistance Proteins, CalU16 and CalU19. ACS Chemical Biology, 2014, 9, 2347-2358.	3.4	24
26	Frenolicins C–G, Pyranonaphthoquinones from <i>Streptomyces</i> sp. RM-4-15. Journal of Natural Products, 2013, 76, 1441-1447.	3.0	62
27	Herbimycins D–F, Ansamycin Analogues from <i>Streptomyce</i> s sp. RM-7-15. Journal of Natural Products, 2013, 76, 1619-1626.	3.0	37
28	Baeyer–Villiger C–C Bond Cleavage Reaction in Gilvocarcin and Jadomycin Biosynthesis. Journal of the American Chemical Society, 2012, 134, 18181-18184.	13.7	85
29	Elucidation of post-PKS tailoring steps involved in landomycin biosynthesis. Organic and Biomolecular Chemistry, 2012, 10, 4256.	2.8	16
30	Cooperation of Two Bifunctional Enzymes in the Biosynthesis and Attachment of Deoxysugars of the Antitumor Antibiotic Mithramycin. Angewandte Chemie - International Edition, 2012, 51, 10638-10642.	13.8	27
31	Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Natural Product Reports, 2012, 29, 264-325.	10.3	280
32	Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Current Opinion in Chemical Biology, 2012, 16, 150-161.	6.1	26
33	Ketoolivosyl-tetracenomycin C: A new ketosugar bearing tetracenomycin reveals new insight into the substrate flexibility of glycosyltransferase ElmGT. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2247-2250.	2.2	12
34	Characterization of the TDP-d-ravidosamine biosynthetic pathway: one-pot enzymatic synthesis of TDP-d-ravidosamine from thymidine-5-phosphate and glucose-1-phosphate. Organic and Biomolecular Chemistry, 2011, 9, 1799.	2.8	14
35	Investigating Mithramycin Deoxysugar Biosynthesis: Enzymatic Total Synthesis of TDPâ€∢scp>D∢/scp>â€Olivose. ChemBioChem, 2011, 12, 2568-2571.	2.6	18
36	Mithramycin Is a Gene-Selective Sp1 Inhibitor That Identifies a Biological Intersection between Cancer and Neurodegeneration. Journal of Neuroscience, 2011, 31, 6858-6870.	3.6	114

3

#	Article	lF	CITATIONS
37	The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis. Journal of Biological Chemistry, 2011, 286, 23533-23543.	3.4	21
38	Cloning and Characterization of the Ravidomycin and Chrysomycin Biosynthetic Gene Clusters. ChemBioChem, 2010, 11, 523-532.	2.6	44
39	Isolation of Streptomyces Species from Soil. Current Protocols in Microbiology, 2010, 19, Unit 10E.4.	6.5	16
40	Delineating the earliest steps of gilvocarcin biosynthesis: role of GilP and GilQ in starter unit specificity. Organic and Biomolecular Chemistry, 2010, 8, 3851.	2.8	11
41	Inactivation of the Ketoreductase gilU Gene of the Gilvocarcin Biosynthetic Gene Cluster Yields New Analogues with Partly Improved Biological Activity. ChemBioChem, 2009, 10, 278-286.	2.6	27
42	Multi-oxygenase Complexes of the Gilvocarcin and Jadomycin Biosyntheses. Journal of the American Chemical Society, 2007, 129, 3780-3781.	13.7	60
43	On the Acceptor Substrate of C-Glycosyltransferase UrdGT2: Three Prejadomycin C-Glycosides from an Engineered Mutant ofStreptomyces globisporus 1912 Î'lndE(urdGT2). Angewandte Chemie - International Edition, 2006, 45, 7842-7846.	13.8	36
44	Characterization of l-glutamine: 2-deoxy-scyllo-inosose aminotransferase (tbmB) from Streptomyces tenebrarius. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 89-92.	2.2	13
45	A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: comparison with gentamicin biosynthetic gene cluster. Archives of Biochemistry and Biophysics, 2004, 429, 204-214.	3.0	84
46	Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. Journal of Soils and Sediments, 0 , 1 .	3.0	2