Mark A Wieczorek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960515/publications.pdf Version: 2024-02-01

		23567	27406
127	11,959	58	106
papers	citations	h-index	g-index
131	131	131	4374
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Crust of the Moon as Seen by GRAIL. Science, 2013, 339, 671-675.	12.6	726
2	Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research, 2000, 105, 4197-4216.	3.3	719
3	The Constitution and Structure of the Lunar Interior. Reviews in Mineralogy and Geochemistry, 2006, 60, 221-364.	4.8	413
4	Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science, 2013, 339, 668-671.	12.6	389
5	Thermal and Magmatic Evolution of the Moon. Reviews in Mineralogy and Geochemistry, 2006, 60, 365-518.	4.8	372
6	Crustal structure of Mars from gravity and topography. Journal of Geophysical Research, 2004, 109, .	3.3	360
7	The "Procellarum KREEP Terrane†Implications for mare volcanism and lunar evolution. Journal of Geophysical Research, 2000, 105, 20417-20430.	3.3	294
8	Potential anomalies on a sphere: Applications to the thickness of the lunar crust. Journal of Geophysical Research, 1998, 103, 1715-1724.	3.3	285
9	Spatiospectral Concentration on a Sphere. SIAM Review, 2006, 48, 504-536.	9.5	285
10	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	12.9	274
11	Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus, 2011, 214, 1-20.	2.5	266
12	Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution. Journal of Geophysical Research, 2002, 107, 19-1-19-25.	3.3	243
13	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	8.1	238
14	Localized spectral analysis on the sphere. Geophysical Journal International, 2005, 162, 655-675.	2.4	223
15	Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. Journal of Geophysical Research, 2004, 109, .	3.3	205
16	Asymmetric thermal evolution of the Moon. Journal of Geophysical Research E: Planets, 2013, 118, 1435-1452.	3.6	193
17	Lunar Multiring Basins and the Cratering Process. Icarus, 1999, 139, 246-259.	2.5	188
18	The timeline of the lunar bombardment: Revisited. Icarus, 2018, 305, 262-276.	2.5	186

#	Article	IF	CITATIONS
19	Lunar interior properties from the GRAIL mission. Journal of Geophysical Research E: Planets, 2014, 119, 1546-1578.	3.6	185
20	Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry. Science, 2013, 339, 675-678.	12.6	177
21	The Origin of Lunar Mascon Basins. Science, 2013, 340, 1552-1555.	12.6	174
22	Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances, 2015, 1, e1500852.	10.3	173
23	SHTools: Tools for Working with Spherical Harmonics. Geochemistry, Geophysics, Geosystems, 2018, 19, 2574-2592.	2.5	155
24	Correction to "Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolutionâ€: Journal of Geophysical Research, 2004, 109, .	3.3	151
25	An impact-driven dynamo for the early Moon. Nature, 2011, 479, 215-218.	27.8	144
26	Thickness and structure of the martian crust from InSight seismic data. Science, 2021, 373, 438-443.	12.6	140
27	Nonuniform cratering of the terrestrial planets. Icarus, 2008, 197, 291-306.	2.5	135
28	GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophysical Research Letters, 2014, 41, 5771-5777.	4.0	126
29	Minimum-Variance Multitaper Spectral Estimation on the Sphere. Journal of Fourier Analysis and Applications, 2007, 13, 665-692.	1.0	124
30	Constraints on the Martian lithosphere from gravity and topography data. Journal of Geophysical Research, 2005, 110, .	3.3	122
31	Back to the Moon: The scientific rationale for resuming lunar surface exploration. Planetary and Space Science, 2012, 74, 3-14.	1.7	119
32	An Impactor Origin for Lunar Magnetic Anomalies. Science, 2012, 335, 1212-1215.	12.6	112
33	Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations. Icarus, 2012, 218, 771-787.	2.5	108
34	A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 2014, 401, 251-260.	4.4	105
35	Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 2012, 74, 15-41.	1.7	104
36	Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra. Journal of Geophysical Research, 2009, 114, .	3.3	103

#	Article	IF	CITATIONS
37	Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties. Science, 2013, 342, 724-726.	12.6	103
38	Gravity and Topography of the Terrestrial Planets. , 2015, , 153-193.		102
39	Petrological constraints on the density of the Martian crust. Journal of Geophysical Research E: Planets, 2014, 119, 1707-1727.	3.6	91
40	Constraints on the composition of the martian south polar cap from gravity and topography. Icarus, 2008, 196, 506-517.	2.5	89
41	The role of magma buoyancy on the eruption of lunar basalts. Earth and Planetary Science Letters, 2001, 185, 71-83.	4.4	85
42	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	8.1	85
43	Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth and Planetary Science Letters, 2006, 243, 1-14.	4.4	83
44	How large are present-day heat flux variations across the surface of Mars?. Journal of Geophysical Research E: Planets, 2016, 121, 2386-2403.	3.6	81
45	The BepiColombo Laser Altimeter (BELA): Concept and baseline design. Planetary and Space Science, 2007, 55, 1398-1413.	1.7	80
46	Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Science Reviews, 2017, 211, 611-650.	8.1	80
47	Formation of the Orientale lunar multiring basin. Science, 2016, 354, 441-444.	12.6	78
48	The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling. Geophysical Research Letters, 2001, 28, 4023-4026.	4.0	75
49	Density and porosity of the lunar crust from gravity and topography. Journal of Geophysical Research, 2012, 117, .	3.3	73
50	Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models. Icarus, 2007, 192, 150-166.	2.5	71
51	4. Thermal and Magmatic Evolution of the Moon. , 2006, , 365-518.		70
52	Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130242.	3.4	70
53	The Thermal State and Interior Structure of Mars. Geophysical Research Letters, 2018, 45, 12,198.	4.0	69
54	The structure and compensation of the lunar highland crust. Journal of Geophysical Research, 1997, 102, 10933-10943.	3.3	68

#	Article	IF	CITATIONS
55	Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nature Geoscience, 2020, 13, 199-204.	12.9	68
56	Modeling polarimetric radar scattering from the lunar surface: Study on the effect of physical properties of the regolith layer. Journal of Geophysical Research, 2011, 116, .	3.3	67
57	Thickness of the crust of Mercury from geoidâ€ŧoâ€ŧopography ratios. Geophysical Research Letters, 2015, 42, 1029-1038.	4.0	67
58	Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth and Planetary Science Letters, 2015, 409, 243-251.	4.4	64
59	The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering. Geophysical Research Letters, 2015, 42, 6939-6944.	4.0	63
60	Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006296.	3.6	61
61	Lunar Seismology: An Update on Interior Structure Models. Space Science Reviews, 2019, 215, 1.	8.1	60
62	Lunar Seismology: A Data and Instrumentation Review. Space Science Reviews, 2020, 216, 1.	8.1	59
63	The formation of lunar mascon basins from impact to contemporary form. Journal of Geophysical Research E: Planets, 2014, 119, 2378-2397.	3.6	57
64	GRAIL, LLR, and LOLA constraints on the interior structure of the Moon. Geophysical Research Letters, 2016, 43, 8365-8375.	4.0	57
65	Mercury's spin–orbit resonance explained byÂinitial retrograde and subsequent synchronousÂrotation. Nature Geoscience, 2012, 5, 18-21.	12.9	56
66	Distribution of Radioactive Heat Sources and Thermal History of the Moon. Journal of Geophysical Research E: Planets, 2018, 123, 3144-3166.	3.6	55
67	The C1XS X-ray Spectrometer on Chandrayaan-1. Planetary and Space Science, 2009, 57, 717-724.	1.7	54
68	Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy, 2012, 33, 529-585.	3.7	52
69	A Serenitatis origin for the Imbrian grooves and South Pole-Aitken thorium anomaly. Journal of Geophysical Research, 2001, 106, 27853-27864.	3.3	51
70	3. The Constitution and Structure of the Lunar Interior. , 2006, , 221-364.		51
71	Thicknesses of mare basalts on the Moon from gravity and topography. Journal of Geophysical Research E: Planets, 2016, 121, 854-870.	3.6	51

Gravity and Topography of the Terrestrial Planets. , 2007, , 165-206.

#	Article	IF	CITATIONS
73	X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti Kα from the lunar surface. Planetary and Space Science, 2009, 57, 744-750.	1.7	46
74	Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 2011, 214, 53-66.	2.5	46
75	Structure and Formation of the Lunar Farside Highlands. Science, 2010, 330, 949-951.	12.6	45
76	InSight Constraints on the Global Character of the Martian Crust. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	45
77	The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon—First results. Planetary and Space Science, 2007, 55, 494-502.	1.7	41
78	Strength, Depth, and Geometry of Magnetic Sources in the Crust of the Moon From Localized Power Spectrum Analysis. Journal of Geophysical Research E: Planets, 2018, 123, 291-316.	3.6	39
79	Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 2016, 354, 438-441.	12.6	38
80	Highâ€Resolution Gravity Field Models from GRAIL Data and Implications for Models of the Density Structure of the Moon's Crust. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006086.	3.6	38
81	Subsurface morphology and scaling of lunar impact basins. Journal of Geophysical Research E: Planets, 2016, 121, 1695-1712.	3.6	37
82	Did a large impact reorient the Moon?. Icarus, 2009, 200, 358-366.	2.5	36
83	Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data. Icarus, 2012, 221, 43-52.	2.5	36
84	Thickness of Lunar Mare Basalts: New Results Based on Modeling the Degradation of Partially Buried Craters. Journal of Geophysical Research E: Planets, 2019, 124, 2430-2459.	3.6	36
85	Improving Constraints on Planetary Interiors With PPs Receiver Functions. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006983.	3.6	34
86	Ring faults and ring dikes around the Orientale basin on the Moon. Icarus, 2018, 310, 1-20.	2.5	31
87	The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon. Planetary and Space Science, 2009, 57, 725-734.	1.7	30
88	The Gravitational Signature of Martian Volcanoes. Journal of Geophysical Research E: Planets, 2019, 124, 2054-2086.	3.6	30
89	The Chandrayaan-1 X-ray Spectrometer: First results. Planetary and Space Science, 2012, 60, 217-228.	1.7	28
90	Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. Journal of Geophysical Research E: Planets, 2017, 122, 383-399.	3.6	27

#	Article	IF	CITATIONS
91	Olivine-bearing lithologies on the Moon: Constraints on origins and transport mechanisms from M3 spectroscopy, radiative transfer modeling, and GRAIL crustal thickness. Icarus, 2018, 300, 287-304.	2.5	27
92	Gravitational signatures of lunar floor-fractured craters. Earth and Planetary Science Letters, 2015, 424, 269-279.	4.4	26
93	Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data. Journal of Geophysical Research E: Planets, 2017, 122, 2429-2444.	3.6	26
94	The Interior Structure of the Moon: What Does Geophysics Have to Say?. Elements, 2009, 5, 35-40.	0.5	25
95	Fundamental relations of mineral specific magnetic carriers for paleointensity determination. Physics of the Earth and Planetary Interiors, 2017, 272, 44-49.	1.9	25
96	Flexure of the Lithosphere Beneath the North Polar Cap of Mars: Implications for Ice Composition and Heat Flow. Geophysical Research Letters, 2020, 47, e2019GL086746.	4.0	23
97	Constraints on Thermal History of Mars From Depth of Pore Closure Below InSight. Geophysical Research Letters, 2020, 47, e2020GL088653.	4.0	21
98	Simulations of Seismic Wave Propagation on Mars. Space Science Reviews, 2017, 211, 571-594.	8.1	19
99	LunarEX—a proposal to cosmic vision. Experimental Astronomy, 2009, 23, 711-740.	3.7	18
100	The forced precession of the Moon's inner core. Journal of Geophysical Research E: Planets, 2016, 121, 1264-1292.	3.6	18
101	Density distribution of asteroid 25143 Itokawa based on smooth terrain shape. Planetary and Space Science, 2019, 174, 32-42.	1.7	18
102	Hydrostatic Interfaces in Bodies With Nonhydrostatic Lithospheres. Journal of Geophysical Research E: Planets, 2019, 124, 1410-1432.	3.6	17
103	Mercury's lowâ€degree geoid and topography controlled by insolationâ€driven elastic deformation. Geophysical Research Letters, 2015, 42, 7327-7335.	4.0	16
104	Impact cratering rate consistency test from ages of layered ejecta on Mars. Planetary and Space Science, 2020, 180, 104755.	1.7	16
105	Large impact cratering during lunar magma ocean solidification. Nature Communications, 2021, 12, 5433.	12.8	16
106	Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission. Experimental Astronomy, 2012, 33, 587-644.	3.7	15
107	The Composition of the South Polar Cap of Mars Derived From Orbital Data. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006730.	3.6	15
108	Lithospheric Structure of Venusian Crustal Plateaus. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	15

#	Article	IF	CITATIONS
109	Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17.	8.1	13
110	A New Largeâ€Scale Map of the Lunar Crustal Magnetic Field and Its Interpretation. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006667.	3.6	12
111	Crustal Porosity of Lunar Impact Basins. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006335.	3.6	11
112	Isostatic Compensation of the Lunar Highlands. Journal of Geophysical Research E: Planets, 2018, 123, 646-665.	3.6	10
113	Impacts on the Moon: Analysis methods and size distribution of impactors. Planetary and Space Science, 2021, 200, 105201.	1.7	10
114	Seismic Velocity Variations in a 3D Martian Mantle: Implications for the InSight Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006755.	3.6	10
115	Is the Lunar Magnetic Field Correlated With Gravity or topography?. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006274.	3.6	9
116	Depth of Martian Magnetization From Localized Power Spectrum Analysis. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006690.	3.6	8
117	Numerical Simulations of the Apollo Sâ€ŧVB Artificial Impacts on the Moon. Earth and Space Science, 2021, 8, e2021EA001887.	2.6	7
118	Effect of ray and speed perturbations on ionospheric tomography by overâ€theâ€horizon radar: A new method. Journal of Geophysical Research: Space Physics, 2014, 119, 7841-7857.	2.4	6
119	Magnetic Anomalies in Five Lunar Impact Basins: Implications for Impactor Trajectories and Inverse Modeling. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006668.	3.6	6
120	Seismic Efficiency for Simple Crater Formation in the Martian Top Crust Analog. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006662.	3.6	6
121	Geodetic investigations of the mission concept MAGIC to reveal Callisto's internal structure. Acta Astronautica, 2022, 195, 68-76.	3.2	5
122	Thickness of Lava Flows Within the Northern Smooth Plains on Mercury as Estimated by Partially Buried Craters. Geophysical Research Letters, 2020, 47, e2020GL090578.	4.0	4
123	The Psyche Topography and Geomorphology Investigation. Space Science Reviews, 2022, 218, 1.	8.1	4
124	The science mission of SpaceIL's Beresheet lander. Planetary and Space Science, 2020, 194, 105115.	1.7	3
125	Statistical analysis of fireballs: Seismic signature survey. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	2
126	An autonomous lunar geophysical experiment package (ALGEP) for future space missions. Experimental Astronomy, 2022, 54, 617-640.	3.7	2

#	Article	IF	CITATIONS
127	Appreciation of Peer Reviewers for 2014. Journal of Geophysical Research E: Planets, 2015, 120, 359-361.	3.6	Ο