

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/960361/publications.pdf Version: 2024-02-01

TINC NI

#	Article	IF	CITATIONS
1	Lung cancer cells expressing a shortened <i>CDK16</i> 3′UTR escape senescence through impaired miRâ€485â€5p targeting. Molecular Oncology, 2022, 16, 1347-1364.	4.6	8
2	An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression. Nature Communications, 2022, 13, 1232.	12.8	6
3	Transcription factor ASCL1 acts as a novel potential therapeutic target for the treatment of the Cushing's disease. Journal of Clinical Endocrinology and Metabolism, 2022, , .	3.6	2
4	Comprehensive analysis reveals distinct mutational signature and its mechanistic insights of alcohol consumption in human cancers. Briefings in Bioinformatics, 2021, 22, .	6.5	14
5	opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosensors and Bioelectronics, 2021, 172, 112766.	10.1	207
6	Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration. Nucleic Acids Research, 2021, 49, e54-e54.	14.5	20
7	Systematic evaluation of the effect of polyadenylation signal variants on the expression of disease-associated genes. Genome Research, 2021, 31, 890-899.	5.5	8
8	SMYD3–PARP16 axis accelerates unfolded protein response and mediates neointima formation. Acta Pharmaceutica Sinica B, 2021, 11, 1261-1273.	12.0	11
9	H3K4 Methyltransferase Smyd3 Mediates Vascular Smooth Muscle Cell Proliferation, Migration, and Neointima Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1901-1914.	2.4	7
10	HCV poly U/UC sequence–induced inflammation leads to metabolic disorders in vulvar lichen sclerosis. Life Science Alliance, 2021, 4, e202000906.	2.8	4
11	Comprehensive characterization of somatic variants associated with intronic polyadenylation in human cancers. Nucleic Acids Research, 2021, 49, 10369-10381.	14.5	14
12	Cancer-associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA-seq data. Genome Research, 2021, 31, 2095-2106.	5.5	20
13	Prevalent intron retention fineâ€ŧunes gene expression and contributes to cellular senescence. Aging Cell, 2020, 19, e13276.	6.7	25
14	Histone methyltransferase Smyd3 is a new regulator for vascular senescence. Aging Cell, 2020, 19, e13212.	6.7	24
15	Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. Frontiers in Genetics, 2020, 11, 867.	2.3	16
16	A bioenergetic shift is required for spermatogonial differentiation. Cell Discovery, 2020, 6, 56.	6.7	21
17	Tempo-spatial alternative polyadenylation analysis reveals that 3′ UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochemical and Biophysical Research Communications, 2020, 523, 1046-1052.	2.1	6
18	Smyd3-PARP16 axis accelerates unfolded protein response and vascular aging. Aging, 2020, 12, 21423-21445.	3.1	12

Τίνς Νι

#	Article	IF	CITATIONS
19	Metastasis-related methyltransferase 1 (Merm1) represses the methyltransferase activity of Dnmt3a and facilitates RNA polymerase I transcriptional elongation. Journal of Molecular Cell Biology, 2019, 11, 78-90.	3.3	1
20	Endogenous Retrovirus-Derived Long Noncoding RNA Enhances Innate Immune Responses via Derepressing RELA Expression. MBio, 2019, 10, .	4.1	39
21	Global downregulation of pigmentation‑associated genes in human premature hair graying. Experimental and Therapeutic Medicine, 2019, 18, 1155-1163.	1.8	5
22	Exploitation of nuclear protein SFPQ by the encephalomyocarditis virus to facilitate its replication. Biochemical and Biophysical Research Communications, 2019, 510, 65-71.	2.1	13
23	Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana. Nucleic Acids Research, 2019, 47, 7886-7900.	14.5	31
24	Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sciences, 2019, 229, 225-232.	4.3	12
25	Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. Aging, 2019, 11, 1356-1388.	3.1	33
26	HNRNPA1-mediated 3′ UTR length changes of <i>HN1</i> contributes to cancer- and senescence-associated phenotypes. Aging, 2019, 11, 4407-4437.	3.1	19
27	Down-regulation of cancer-associated gene CDC73 contributes to cellular senescence. Biochemical and Biophysical Research Communications, 2018, 499, 809-814.	2.1	2
28	3′ UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Research, 2018, 28, 285-294.	5.5	90
29	Antisense transcription regulates the expression of sense gene via alternative polyadenylation. Protein and Cell, 2018, 9, 540-552.	11.0	3
30	Position-specific intron retention is mediated by the histone methyltransferase SDG725. BMC Biology, 2018, 16, 44.	3.8	41
31	Disruption of <i>Gen1</i> Causes Congenital Anomalies of the Kidney and Urinary Tract in Mice. International Journal of Biological Sciences, 2018, 14, 10-20.	6.4	11
32	The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging, 2018, 10, 1206-1222.	3.1	25
33	An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells. Scientific Reports, 2017, 7, 2320.	3.3	91
34	Dynamic landscape of alternative polyadenylation during retinal development. Cellular and Molecular Life Sciences, 2017, 74, 1721-1739.	5.4	20
35	Alternative splicing in aging and age-related diseases. Translational Medicine of Aging, 2017, 1, 32-40.	1.3	28
36	Alternative Polyadenylation: Methods, Findings, and Impacts. Genomics, Proteomics and Bioinformatics, 2017, 15, 287-300.	6.9	100

Τίνς Νι

#	Article	IF	CITATIONS
37	NRF1 coordinates with DNA methylation to regulate spermatogenesis. FASEB Journal, 2017, 31, 4959-4970.	0.5	41
38	PAâ€seq for Global Identification of RNA Polyadenylation Sites of Kaposi's Sarcoma–Associated Herpesvirus Transcripts. Current Protocols in Microbiology, 2016, 41, 14E.7.1-14E.7.18.	6.5	2
39	Clobal intron retention mediated gene regulation during CD4 ⁺ T cell activation. Nucleic Acids Research, 2016, 44, 6817-6829.	14.5	96
40	Novel loci and pathways significantly associated with longevity. Scientific Reports, 2016, 6, 21243.	3.3	145
41	Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature, 2016, 537, 412-416.	27.8	514
42	Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biology, 2016, 13, 1011-1024.	3.1	72
43	SET DOMAIN GROUP 708, a histone H3 lysine 36â€specific methyltransferase, controls flowering time in rice (Oryza sativa). New Phytologist, 2016, 210, 577-588.	7.3	49
44	Interaction Between the <i>FOXO1A-209</i> Genotype and Tea Drinking Is Significantly Associated with Reduced Mortality at Advanced Ages. Rejuvenation Research, 2016, 19, 195-203.	1.8	14
45	RNA polymerase II–associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Science, 2015, 350, 1383-1386.	12.6	189
46	MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice. Scientific Reports, 2015, 5, 12049.	3.3	19
47	An intriguing RNA species—perspectives of circularized RNA. Protein and Cell, 2015, 6, 871-880.	11.0	88
48	GxE Interactions between FOXO Genotypes and Tea Drinking Are Significantly Associated with Cognitive Disability at Advanced Ages in China. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 426-433.	3.6	34
49	Certain Adenylated Non-Coding RNAs, Including 5′ Leader Sequences of Primary MicroRNA Transcripts, Accumulate in Mouse Cells following Depletion of the RNA Helicase MTR4. PLoS ONE, 2014, 9, e99430.	2.5	5
50	A Novel Role of CDX1 in Embryonic Epicardial Development. PLoS ONE, 2014, 9, e103271.	2.5	8
51	Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy. BMC Genomics, 2013, 14, 615.	2.8	43
52	Genome-wide identification and predictive modeling of tissue-specific alternative polyadenylation. Bioinformatics, 2013, 29, i108-i116.	4.1	27
53	A Viral Genome Landscape of RNA Polyadenylation from KSHV Latent to Lytic Infection. PLoS Pathogens, 2013, 9, e1003749.	4.7	49
54	A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nature Methods. 2010. 7. 521-527.	19.0	153

Ting Ni

#	Article	IF	CITATIONS
55	The Prevalence and Regulation of Antisense Transcripts in Schizosaccharomyces pombe. PLoS ONE, 2010, 5, e15271.	2.5	50
56	Selective Gene Amplification for High-Throughput Sequencing. Recent Patents on DNA & Gene Sequences, 2009, 3, 29-38.	0.7	4